Researchers in Physics
Permanent URI for this community
Browse
Browsing by Subject "Cosmology"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Cosmology on the largest scales with the SKA(Proceedings of Science, 2014) Camera, Stefano; Raccanelli, Alvise; Bull, Philip; Bertacca, Daniele; Chen, Xuelei; Ferreira, Pedro G.; Kunz, Martin; Maartens, Roy; Mao, Yi; Santos, Mario G.; Shapiro, Paul R.; Viel, Matteo; Xug, YidongThe study of the Universe on ultra-large scales is one of the major science cases for the Square Kilometre Array (SKA). The SKA will be able to probe a vast volume of the cosmos, thus representing a unique instrument, amongst next-generation cosmological experiments, for scrutinising the Universe’s properties on the largest cosmic scales. Probing cosmic structures on extremely large scales will have many advantages. For instance, the growth of perturbations is well understood for those modes, since it falls fully within the linear régime. Also, such scales are unaffected by the poorly understood feedback of baryonic physics. On ultra-large cosmic scales, two key effects become significant: primordial non-Gaussianity and relativistic corrections to cosmological observables. Moreover, if late-time acceleration is driven not by dark energy but by modifications to general relativity, then such modifications should become apparent near and above the horizon scale. As a result, the SKA is forecast to deliver transformational constraints on non-Gaussianity and to probe gravity on super-horizon scales for the first time.Item Hunting down horizon-scale effects with multi-wavelength surveys(American Astronomical Society, 2015) Fonseca, Jose; Camera, Stefano; Santos, Mario G.; Maartens, RoyNext-generation cosmological surveys will probe ever larger volumes of the universe, including the largest scales, near and beyond the horizon. On these scales, the galaxy power spectrum carries signatures of local primordial non-Gaussianity (PNG) and horizon-scale general relativistic (GR) effects. However, cosmic variance limits the detection of horizon-scale effects. Combining different surveys via the multi-tracer method allows us to reduce the effect of cosmic variance. This method benefits from large bias differences between two tracers of the underlying dark matter distribution, which suggests a multi-wavelength combination of large volume surveys that are planned on a similar timescale. We show that the combination of two contemporaneous surveys, a large neutral hydrogen intensity mapping survey in SKA Phase 1 and a Euclid-like photometric survey, will provide unprecedented constraints on PNG as well as detection of the GR effects. We forecast that the error on local PNG will break through the cosmic variance limit on cosmic microwave background surveys, depending on assumed priors, bias, and sky coverage. GR effects are more robust to changes in the assumed fiducial model, and we forecast that they can be detected with a signal-to-noise of about 14.Item Nonlinear modulation of the HI power spectrum on ultra-large scales. I(IOP Science, 2015) Umeh, Obinna; Maartens, Roy; Santos, Mario G.Intensity mapping of the neutral hydrogen brightness temperature promises to provide a three-dimensional view of the universe on very large scales. Nonlinear effects are typically thought to alter only the small-scale power, but we show how they may bias the extraction of cosmological information contained in the power spectrum on ultra-large scales. For linear perturbations to remain valid on large scales, we need to renormalize perturbations at higher order. In the case of intensity mapping, the second-order contribution to clustering from weak lensing dominates the nonlinear contribution at high redshift. Renormalization modifies the mean brightness temperature and therefore the evolution bias. It also introduces a term that mimics white noise. These effects may influence forecasting analysis on ultra-large scales.Item Overview of Cosmology with the SKA(Proceedings of Science, 2014) Maartens, Roy; Abdalla, Filipe B.; Jarvis, Matt; Santos, Mario G.The new frontier of cosmology will be led by three-dimensional surveys of the large-scale structure of the Universe. Based on its all-sky surveys and redshift depth, the SKA is destined to revolutionize cosmology, in combination with future optical/ infrared surveys such as Euclid and LSST. Furthermore, we will not have to wait for the full deployment of the SKA in order to see transformational science. In the first phase of deployment (SKA1), all-sky HI intensity mapping surveys and all-sky continuum surveys are forecast to be at the forefront on the major questions of cosmology. We give a broad overview of the major contributions predicted for the SKA. The SKA will not only deliver precision cosmology – it will also probe the foundations of the standard model and open the door to new discoveries on large-scale features of the Universe.Item Probing the imprint of interacting dark energy on very large scales(American Physical Society, 2015) Duniya, Didam, G. A.; Bertacca, Daniele; Maartens, RoyThe observed galaxy power spectrum acquires relativistic corrections from light-cone effects, and these corrections grow on very large scales. Future galaxy surveys in optical, infrared and radio bands will probe increasingly large wavelength modes and reach higher redshifts. In order to exploit the new data on large scales, an accurate analysis requires inclusion of the relativistic effects. This is especially the case for primordial non-Gaussianity and for extending tests of dark energy models to horizon scales. Here we investigate the latter, focusing on models where the dark energy interacts nongravitationally with dark matter. Interaction in the dark sector can also lead to large-scale deviations in the power spectrum. If the relativistic effects are ignored, the imprint of interacting dark energy will be incorrectly identified and thus lead to a bias in constraints on interacting dark energy on very large scales.Item Testing foundations of modern cosmology with SKA all-sky surveys(Proceedings of Science, 2014) Schwarz, Dominik J.; Bacon, David; Chen, Song; Clarkson, Chris; Huterer, Dragan; Kunz, Martin; Maartens, Roy; Raccanelli, Alvise; Rubart, Matthias; Starck, Jean-LucContinuum and HI surveys with the Square Kilometre Array (SKA) will allow us to probe some of the most fundamental assumptions of modern cosmology, including the Cosmological Principle. SKA all-sky surveys will map an enormous slice of space-time and reveal cosmology at superhorizon scales and redshifts of order unity. We illustrate the potential of these surveys and discuss the prospects to measure the cosmic radio dipole at high fidelity. We outline several potentially transformational tests of cosmology to be carried out by means of SKA all-sky surveys.]