Magister Scientiae - MSc (Physics)
Permanent URI for this collection
Browse
Browsing by Subject "Active galactic nuclei"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Modelling radio galaxies in the Millennium simulation: SKA/MeerKAT sources and CMB contaminants(University of the Western Cape, 2010) Ramamonjisoa, Fidy Andriamanankasina; Cress, Catherine; Dept. of PhysicsWe investigate the modelling of radio galaxies within a semi-analytic framework in the Millennium Simulation of the Virgo Consortium. The aim is to assess the radio sources contamination of Sunyaev-Zeldovich (SZ) signatures of clusters of galaxies in Cosmic Microwave Background (CMB) experiments. The modelling is also relevant to the Karoo Array Telescope (MeerKAT) and the Square Kilometre Array (SKA) science. The semi-analytical model consists of N-body simulation, the Millennium Run to trace the merger history of dark matter haloes within the Λ Cold Dark Matter (ΛCDM) cosmology and a follow up of the black hole accretion history and Active Galactic Nuclei (AGN) evolution. We study the growth of the supermassive black hole (SMBH) in galaxy centres and determine the black hole mass accretion conversion into radiation. We identify a model which matches observed radio luminosity function. We describe a model of observed sample of radio surveys at a given frequency and a flux density limit to obtain a model of radio luminosity function (space density of radio sources as a function of redshift) that we compare with our simulated data. We determine the redshift distribution of radio galaxies (FRI), blazars and radio quasars (FRII) in the simulation. We focus the modelling on flat spectrum population of blazars since their jets are collimated towards us and thus constitute the most potential contaminants of the CMB. We determine the spatial and density distribution of radio sources in clusters with a virial mass Mvir 2 1014h−1M and then compute the temperature fluctuations and fluxes produced by these cluster radio sources. Our main results include: the model provides a reasonable match within uncertainties with the model obtained by Dunlop & Peacock (1990) [39] using their best fit of radio luminosity function at redshift z . 0:3. The model underestimates the number of radio sources at high redshift z & 1. Radio sources are concentrated around the centre of clusters with a maximum density at r . 0:1r200 where r200 is the radius within which the density is 200 times the critical density. Radio sources are more concentrated in low mass clusters. The model predicts a surface density profile of radio sources with luminosity P 1023 W.Hz−1 at 1.4 GHz (z . 0:06) in agreement with that of Lin & Mohr (2007) [58] at r . 0:1r200 but underestimates the density in the outskirts of the clusters. BL Lacs and FRI radio galaxies produce non negligible contamination at redshift z . 0:1. They produce a mean temperature fluctuation 4:5 K at redshift z 0:01 which can be at the same level as the kinetic SZE signal produced by the cluster. Blazars constitute potential contaminant of the thermal SZ effect at redshift z 1:0 and z 1:5 at 145 GHz where they produce a mean temperature 300 K - 350 K for an average mass of the cluster.Item The nature of the microjy source population(University of the Western Cape, 2015) Ocran Emmanuel Francis; Taylor, Russ; Vaccari, MattiaThe study of the faint radio universe and of its properties has recently become a very active field of research not only because of the much improved capabilities of the SKA pathfinders but also because of the need to better plan for SKA surveys. These new facilities will map large areas of the sky to unprecedented depths and transform radio astronomy into the leading technique for investigating the complex processes which govern the formation and evolution of galaxies. This thesis combines multi-wavelength techniques, highly relevant to future deep radio surveys, to study the properties of faint radio sources. The nature of the faint radio sources is presented, over a large GMRT survey area of an area of 1.2 deg2 comprising 2800 sources. Utilising multi-wavelength data we have matched 85% of the radio population to Spitzer/IRAC and obtained a redshift estimate for 63%. The redshift associations are a combination of photometric and spectroscopic redshift estimates. This study investigates several multi-wavelength diagnostics used to identify AGN, using radio, infrared, optical and x-ray data . This analysis shows that various diagnostics (from the radio through the X-ray ones) select fairly different types of AGNs, with an evidence of a disagreement in the number of AGNs selected by each individual diagnostics. For the sources with redshift we use a classification scheme based on radio luminosity, x-ray emission, BOSS/SDSS spectroscopy, IRAC colors satisfying the Donley criterion, and MIPS 24ɥm radio-loud AGN criteria to separate them into AGNs and SFGs. On the basis of this classification, we find that at least 12.5% of the sources with redshifts are AGNs while the remaining 87.5% are adopted as SFGs. We explore the nature of the classified sources through the far-infrared radio correlation. We measure a median qIR value of 2:45± 0:01 for the SFGs and qIR value of 2:27 ± 0:05 for the AGNs. The decrease in the median value of qIR for the AGNs is a result of the additional AGN component to radio emission for the AGN-powered sources and find tentative evidence of an evolution of the qIR with redshift.