Department of Biotechnology
Permanent URI for this community
Browse
Browsing by Subject "Abiotic stress"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Comparative analysis of sugar-biosynthesis proteins of sorghum stems and the investigation of their role in hyperosmotic stress tolerance(University of the Western Cape, 2015) Njokweni, Anathi Perseverence; Ndimba, BonganiSorghum bicolor (L.) Moench is an important cereal crop currently explored as a potential bio-energy crop due to its stress tolerance and ability to ferment soluble sugars. Physiological studies on sorghum varieties have demonstrated that part of drought tolerance is attributed to sugar accumulation in the sorghum stems. Despite the agronomic advantages of sorghum as a bio-energy crop, more research efforts towards the molecular elucidation of sorghum traits that confer drought tolerance are necessary. Particular focus on traits, which could potentially contribute to an efficient bio-energy production under environmental constraints, would be an added advantage. This study examined the role of sugar biosynthesis proteins in conferring tolerance to drought-induced hyperosmotic stress, and ultimately osmotic adjustment in sorghum varieties. Sorghum bicolor (L.) Moench varieties (ICSB338, ICSB73, ICSV213 and S35) with different levels of drought tolerance, were grown under watered conditions until early anthesis after which, a 10-day water deficit period was introducedItem Evaluation of the capacity of hydrogen sulfide to reduce infection of maize(University of the Western Cape, 2020) Ntloko, A.; Ludidi, NMaize (Zea mays L.) is grown globally as an important grain crop in South Africa, United States, China and Brazil and plays a major role in the worldwide economy. In South Africa, the grain is utilised for food consumption, livestock feed, for malting purposes and bioethanol production. Maize contains approximately 72% starch, 10% protein, 4% fat and supplying an energy density of 365 Kcal/100 g. The production of grain crops in South Africa is restricted by various factors such as abiotic and biotic stresses. The fungal genus Aspergillus is one of the most important biotic stresses affecting maize in the country. Aspergillus flavus can contaminate a wide range of agricultural commodities either in storage or field. Hydrogen sulfide appears to have a potential in the mechanism of resistance against pathogen attack by Aspergillus flavus.Item Investigation of the role of AtNOGC1, a guanylyl cyclase protein in response to abiotic and biotic stress(University of the Western Cape, 2018) Muthevhuli, Mpho; Mulaudzi-Masuku, Takalani; Iwuoha, Emmanuel; Donaldson, LaraAgricultural production is one of the most important sectors which provide food for the growing world population which is estimated to reach 9.7 billion by 2050, thus there is a need to produce more food. Climate change, on the other hand, is negatively affecting major global crops such as maize, sorghum, wheat and barley. Environmental factors such as salinity, drought, high temperatures and pathogens affect plant production by oxidatively damaging the physiological processes in plants, leading to plant death. Poor irrigation used to combat drought result in salinasation, which is estimated to affect 50% of arable land by 2050. Plants have developed several mechanisms that protect them against stress and these include overexpression of stress responsive genes and altered signal transduction to change the expression of stress responsive genes, among others. Cyclic 3’5’ guanosine monophosphate (cGMP), a second messenger that is synthesised by guanylyl cyclase (GC), transmit signals to various cellular functions in plants during plant development, growth and response to abiotic and biotic stresses. Arabidopsis thaliana nitric oxide guanylyl cyclase 1 (AtNOGC1) is a guanylyl cyclase which upon activation by nitric oxide (NO) leads to the production of more cGMP. Cyclic GMP further activates protein kinases, ion gated channels and phosphodiesterase which mediate response to various stresses. In this project the role of AtNOGC1 was investigated in response to abiotic and biotic stresses through analysis of its evolutionary relationships, promoter, gene expression and functional analysis via the viability assays in Escherichia coli (E.coli). Phylogenetic tree, exon-intron structure and conserved motifs were analysed using the Molecular Evolutionary Genetics Analysis (MEGA V.7), Gene Structure Display Server 2.0 (GSDS 2.0), and Multiple Expectation Maximisation for Motif Elicitation (MEME) tools respectively. AtNOGC1’s gene expression was analysed by the Real-Time Quantitative Reverse Transcription Polymerase Reaction (qRT-PCR), whereas functional analysis was carried out using the cell viability (liquid and spot) assays to determine its ability to confer stress tolerance to E. coli.Item Zirconium-induced physiological and biochemical responses in two genotypes of Brassica napus L.(University of the Western Cape, 2015) Braaf, Ryan; Keyster, MarshallSouth Africa is one of two countries responsible for the production of approximately 80% of the world’s Zr. The increase in mining activity has detrimental effects on the environment, especially crop plants, as more pollutants are leached into the soil. Consequently, it is necessary to understand how plants respond to this form of abiotic stress. Therefore, this study focused on determining the physiological and biochemical responses of two genotypes of Brassica napus L (Agamax and Garnet) in response to Zr stress. The levels of cell death, lipid peroxidation and ROS were higher in Garnet, whereas the chlorophyll content was higher in Agamax. Furthermore, native PAGE analysis detected seven SOD isoforms and seven APX isoforms in Agamax, compared to 6 SOD isoforms and 7 APX isoforms in Garnet. The results thus indicate that Agamax is tolerant to Zr-induced stress, whereas Garnet is sensitive. An assay for the rapid quantification of Zr within plant samples was subsequently developed, which revealed that Agamax retained the bulk of the Zr within its roots, whereas Garnet translocated most of the Zr to its leaves. The ability of Agamax to sequester Zr in its roots comes forth as one of the mechanisms which confers greater tolerance to Zr-induced stress. As a consequence, our study sought to use the optical, physical and chemical properties of quantum dots to image the uptake and translocation of Zr in B. napus genotypes. ICPOES was also performed to quantify Zr levels in various plant organs. Data from the ICPOES revealed varying patterns of uptake and translocations between Garnet and Agamax. These patterns were similarly shown in IVIS Lumina images, tracing the transport of QD/Zr conjugates. This method ultimately proved to be successful in tracing the uptake of Zr, and could essentially be a useful tool for targeting and imaging a number of other molecules.