Research Articles (IMBM)
Permanent URI for this collection
Browse
Browsing by Subject "Archaea"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item 16 S rDNA primers and the unbiased assessment of thermophile diversity(Portland Press, 2004) Baker, Gillian; Cowan, Donald A.Our understanding of thermophile diversity is based predominantly on PCR studies of community DNA. ‘Universal’ and domain-specific rRNA gene PCR primers have historically been used for the assessment of microbial diversity without adequate regard to the degree of specificity of primer pairs to different prokaryotic groups. In a reassessment of the published primers commonly used for ‘universal’ and archaeal 16 S rDNA sequence amplification we note that substantial variations in specificity exist. An unconsidered choice of primers may therefore lead to significant bias in determination of microbial community composition. In particular, Archaea-specific primer sequences typically lack specificity for the Korarchaeota and Nanoarchaea and are often biased towards certain clades. New primer pairs specifically designed for ‘universal’ archaeal 16 S rDNA sequence amplification, with homology to all four archaeal groups, have been designed. Here we present the application of these new primers for preparation of 16 S libraries from thermophile communities.Item High 16S rDNA bacterial diversity in glacial meltwater lake sediment, Bratina Island, Antarctica(Springer Verlag, 2003) Sjoling, Sara; Cowan, Donald A.The microbial diversity in maritime meltwater pond sediments from Bratina Island, Ross Sea, Antarctica was investigated by 16S rDNA-dependent molecular phylogeny. Investigations of the vertical distribution, phylogenetic composition, and spatial variability of Bacteria and Archaea in the sediment were carried out. Results revealed the presence of a highly diverse bacterial population and a significantly depthrelated composition. Assessment of 173 partial 16S rDNA clones analyzed by amplified rDNA restriction analysis (ARDRA) using tetrameric restriction enzymes (HinP1I 5'GVCGC3'and Msp I. 5'CVGG3', BioLabs) revealed 153 different bacterial OTUs (operational taxonomic units). However, only seven archaeal OTUs were detected, indicating low archaeal diversity. Based on ARDRA results, 30 bacterial clones were selected for sequencing and the sequenced clones fell into seven major lineages of the domain Bacteria; the a, c, and d subdivisions of Proteobacteria, the Cytophaga–Flavobacterium– Bacteroides, the Spirochaetaceae, and the Actinobacteria. All of the archaeal clones sequenced belonged to the group Crenarchaeota and phylogenetic analysis revealed close relationships with members of the deep-branching Group 1 Marine Archaea.Item Review and re-analysis of domain-specific 16S primers(Elsevier, 2003) Baker, Gillian; Smith, Jacques J.; Cowan, Donald A.The Polymerase Chain Reaction (PCR) has facilitated the detection of unculturable microorganisms in virtually any environmental source and has thus been used extensively in the assessment of environmental microbial diversity. This technique relies on the assumption that the gene sequences present in the environment are complementary to the “universal” primers used in their amplification. The recent discovery of new taxa with 16S rDNA sequences not complementary to standard universal primers suggests that current 16S rDNA libraries are not representative of true prokaryotic biodiversity. Here we re-assess the specificity of commonly used 16S rRNA gene primers and present these data in tabular form designed as a tool to aid simple analysis, selection and implementation. In addition, we present two new primer pairs specifically designed for effective ‘universal’ Archaeal 16S rDNA sequence amplification. These primers are found to amplify sequences from Crenarchaeote and Euryarchaeote type strains and environmental DNA.