Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse UWCScholar
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Zide, Dorcas"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Recovery of organic electrolyte solvents from spent perforated Li-ion cells using a low-temperature vacuum-assisted distillation process
    (Elsevier B.V., 2025) Tawonezvi, Tendai; Sinto, Anele; Zide, Dorcas; Bladergroen, Bernard J.
    Electrolyte solvent recovery is rarely addressed in current state-of-the-art lithium-ion battery (LiB) recycling processes, even though electrolytes are flammable, toxic, and hazardous. In conventional recycling processes, electrolytes typically evaporate or decompose uncontrollably during pre-treatment steps such as shredding, leading to both safety risks and environmental damage. To overcome these limitations, we investigated a controlled electrolyte solvent recovery process using mild-temperature vacuum distillation on perforated, intact batteries rather than shredded material. This method enabled safe handling and minimised uncontrolled emissions during pre-treatment. Analysis results demonstrate a successful 84 % recovery of the major electrolyte solvents, dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and ethylene carbonate (EC), after 300 min of thermal-vacuum treatment at 110 °C and 80 mBar vacuum pressure. Decomposition products of Lithium Hexafluorophosphate (LiPF₆), which include hydrogen fluoride (HF) and phosphoryl fluoride (POF₃), were not identified in the exhaust gas, and the scrubber solution remained neutral during operation. These results demonstrate that thermal treatment below 110 °C is a non-complex, feasible, and environmentally friendly process for recovering electrolyte solvents prior to metal recovery, addressing a major gap in current LiB recycling processes.

DSpace software copyright © 2002-2026 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback