Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse UWCScholar
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Yan, Haojing"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Optical-faint, far-infrared-bright Herschel sources in the CANDELS fields: Ultra-luminous infrared galaxies at z > 1 and the effect of source blending
    (American Astronomical Society, 2014) Dave, Romeel; Yan, Haojing; Stefanon, Mauro
    The Herschel very wide-field surveys have charted hundreds of square degrees in multiple far-IR (FIR) bands. While the Sloan Digital Sky Survey (SDSS) is currently the best resource for optical counterpart identifications over such wide areas, it does not detect a large number of Herschel FIR sources and leaves their nature undetermined. As a test case, we studied seven ''SDSS-invisible'', very bright 250 m sources (S250 > 55 mJy) in the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) fields where we have a rich multi-wavelength data set. We took a new approach to decompose the FIR sources, using the near-IR or the optical images directly for position priors. This is an improvement over the previous decomposition efforts where the priors are from mid-IR data that still suffer from the source blending problem in the first place. We found that in most cases the single Herschel sources are made of multiple components that are not necessarily at the same redshifts. Our decomposition succeeded in identifying and extracting their major contributors. We show that these are all ULIRGs at z 1 - 2 whose high LIR is mainly due to dust-obscured star formation. Most of them would not be selected as sub-mm galaxies. They all have complicated morphologies indicative of merger or violent instability, and their stellar populations are heterogeneous in terms of stellar masses, ages and formation histories. Their current ULIRG phases are of various degrees of importance in their stellar mass assembly. Our practice provides a promising starting point to develop an automatic routine to reliably study bright Herschel sources.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback