Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse UWCScholar
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Tsuyuki, Satoshi"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Estimating above-ground biomass in sub-tropical buffer zone community Forests, Nepal, using Sentinel 2 data
    (MDPI, 2018) Pandit, Santa; Tsuyuki, Satoshi; Dube, Timothy
    Accurate assessment of above-ground biomass (AGB) is important for the sustainable management of forests, especially buffer zone (areas within the protected area, where restrictions are placed upon resource use and special measure are undertaken to intensify the conservation value of protected area) areas with a high dependence on forest products. This study presents a new AGB estimation method and demonstrates the potential of medium-resolution Sentinel-2 Multi-Spectral Instrument (MSI) data application as an alternative to hyperspectral data in inaccessible regions. Sentinel-2 performance was evaluated for a buffer zone community forest in Parsa National Park, Nepal, using field-based AGB as a dependent variable, as well as spectral band values and spectral-derived vegetation indices as independent variables in the Random Forest (RF) algorithm. The 10-fold cross-validation was used to evaluate model effectiveness. The effect of the input variable number on AGB prediction was also investigated. The model using all extracted spectral information plus all derived spectral vegetation indices provided better AGB estimates (R2 = 0.81 and RMSE = 25.57 t ha-1). Incorporating the optimal subset of key variables did not improve model variance but reduced the error slightly. This result is explained by the technically-advanced nature of Sentinel-2, which includes fine spatial resolution (10, 20 m) and strategically-positioned bands (red-edge), conducted in flat topography with an advanced machine learning algorithm. However, assessing its transferability to other forest types with varying altitude would enable future performance and interpretability assessments of Sentinel-2.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback