Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse UWCScholar
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Totito, Thandiwe Crystal"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Fabrication and characterization of electrospun waste polyethylene terephthalate blended with chitosan: A potential single-use material
    (MDPI, 2023) Totito, Thandiwe Crystal; Bode-Aluko, Chris; Katri, Laatikainen
    Textile single-use products are dominantly used for hygiene and personal care, many of which are non-biodegradable and are frequently discarded into sewerage systems, thus causing blockages. Thus, there is a need to move towards water-soluble textiles. This research study focuses on transforming or repurposing biomass material and synthetic reusable waste plastic materials to improve waste. Chitosan (CS) nanofibers could be used in single-use nonwoven fabric or biodegradable tissues, as the water-soluble properties of chitosan nanofibers make them the perfect material for single-use applications. Furthermore, CS was blended with polyethylene terephthalate (PET) polymer and PET-based waste plastic (CS-WPET) to slow the CS nanofibers’ water degradability and strengthen the durability of the nanofiber which could be used as air filters. The CS-TFA and CS-TFA/DCM nanofiber diameters were 95.58 ± 39.28 nm or 907.94 ± 290.18 nm, respectively, as measured from the HRSEM images. The CS-PET and CS-WPET hybrid nanofibers had fiber diameters of 246.13 ± 96.36 or 58.99 ± 20.40 nm, respectively. The thermal durability of the nanofibers was tested by TGA, which showed that CS-TFA/DCM nanofibers had sufficient thermal stability up to 150 ◦C, making them suitable for filter or fabric use at moderate temperatures. The blended nanofibers (CS-PET and CS-WPET) were thermally stable up to 160 ◦C. In the aqueous medium stability test, CS-PET and CS-WPET hybrid nanofibers had a slower degradation rate and were easily dissolved, while the CS nanofibers were rapidly and completely dissolved in an aqueous medium. Blending waste PET with CS allows it to be recycled into a useful single-use, non-woven textile, with greater water solubility than unmodified PET nanofibers but more durability than CS nanofibers on their own.
  • Loading...
    Thumbnail Image
    Item
    Photocatalytic activity of supported TiO2 nanocrystals
    (2013) Totito, Thandiwe Crystal; Petrik, Leslie F.
    In recent times, the occurrence and presence of complex recalcitrant toxic contaminants in water and wastewater is increasing and consequently contributes to the non-availability of clean and safe drinking water. Water treatment is complex, time demanding and energy intensive due to the physico-chemical structural complexity and diversity of the pollutants. Non-availability of good drinking water has negatively affected human health and the ecosystem. Over the years, numerous conventional treatment techniques were used to degrade and remove these pollutants, but investigations indicated that some of the pollutants are not susceptible to conventional treatment. Advanced oxidation technology, among which heterogeneous photocatalysis (involving the use of a semiconductor) has emerged as one of the more promising techniques to remediate contaminated water. Titanium dioxide (TiO2) semiconductor photocatalysis is considered to be a good option due to its cost effectiveness, chemical and thermal stability, and inertness in the area of wastewater reclamation and re-use. However the post separation of the titania particles poses a threat to the wastewater remediation. Hence there is a need to develop a supported high surface area photocatalyst that will resolve the post separation challenge. This present study aimed to prepare high surface area TiO2 anatase nanocrystals supported on a stainless steel mesh. These new composite materials were used to remove methylene blue (MB) from aqueous solutions. The supporting procedure involved the thermal decomposition of a sol gel solution coated upon stainless steel mesh. The nanocrystalline anatase phase was formed by thermal decomposition on a stainless steel mesh coated with 8 % PAN/DMF/TiO2 sol gel formation calcined at varying temperatures of 300 °C, 400 °C, 500 °C and 600 °C. The heating rate of 50 °C/min and independent holding time of 1 h, 2 h, 3 h and 4 h were applied to find the optimum supporting conditions. The synthesised TiO2 nanocomposites materials were characterised using the following analytical techniques: XRD, HRSEM, EDS, HRTEM, SAED, FTIR and UV-Vis absorption spectroscopy materials were characterised, and the results indicate that synthesised TiO2 nanocrystals were in the anatase form, polycrystalline in nature, and contained additional carbon-carbon bonds from the polymer used during preparation with TiO2 particle sizes range from 13.6 nm to 2285 nm.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback