Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse UWCScholar
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Tian, Zhongqun"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    CNx-modified Fe3O4 as Pt nanoparticle support for the oxygen reduction reaction
    (Springer, 2013) Wang, Rongfang; Jia, Jingchun; Wang, Hui; Wang, Qizhao; Ji, Shan; Tian, Zhongqun
    A novel electrocatalyst support material, nitrogendoped carbon (CNx)-modified Fe3O4 (Fe3O4-CNx), was synthesized through carbonizing a polypyrrole-Fe3O4 hybridized precursor. Subsequently, Fe3O4-CNx-supported Pt (Pt/Fe3O4-CNx) nanocomposites were prepared by reducing Pt precursor in ethylene glycol solution and evaluated for the oxygen reduction reaction (ORR). The Pt/Fe3O4-CNx catalysts were characterized by X-ray diffraction, Raman spectra, X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy. The electrocatalytic activity and stability of the as-prepared electrocatalysts toward ORR were studied by cyclic voltammetry and steady-state polarization measurements. The results showed that Pt/ Fe3O4-CNx catalysts exhibited superior catalytic performance for ORR to the conventional Pt/C and Pt/C-CNx catalysts.
  • Loading...
    Thumbnail Image
    Item
    Selenium functionalized carbon for high dispersion of platinumeruthenium nanoparticles and its effect on the electrocatalytic oxidation of methanol
    (Elsevier, 2013) Wang, Rongfang; Da, Huahua; Wang, Hui; Ji, Shan; Tian, Zhongqun
    Using selenium functionalized carbon as supports, platinumeruthenium nanoparticles were highly dispersed on the carbon surface, and showed improved electrochemical properties for methanol electrooxidation. The method provides a new route for functionalization of the carbon surface on which to disperse noble metal nanoparticles for application as electrocatalysts in fuel cells.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback