Browsing by Author "Tennyson, Jonathan"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item The 2020 release of the ExoMol database: Molecular line lists for exoplanet and other hot atmospheres(Elsevier, 2020) Lynas-Gray, A.E.; Tennyson, Jonathan; Yurchenko, SergeyThe ExoMol database (www.exomol.com) provides molecular data for spectroscopic studies of hot atmospheres. While the data are intended for studies of exoplanets and other astronomical bodies, the dataset is widely applicable. The basic form of the database is extensive line lists; these are supplemented with partition functions, state lifetimes, cooling functions, Landé g-factors, temperature-dependent cross sections, opacities, pressure broadening parameters, k-coefficients and dipoles. This paper presents the latest release of the database which has been expanded to consider 80 molecules and 190 isotopologues totaling over 700 billion transitions. While the spectroscopic data are concentrated at infrared and visible wavelengths, ultraviolet transitions are being increasingly considered in response to requests from observers. The core of the database comes from the ExoMol project which primarily uses theoretical methods, albeit usually fine-tuned to reproduce laboratory spectra, to generate very extensive line lists for studies of hot bodies. The data have recently been supplemented by line lists derived from direct laboratory observations, albeit usually with the use of ab initiotransition intensities. A major push in the new release is towards accurate characterisation of transition frequencies for use in high resolution studies of exoplanets and other bodies.Item Exomol line lists – xliv. Infrared and ultraviolet line list for silicon monoxide (28si16o)(Oxford University Press, 2022) Yurchenko, Sergei N.; Tennyson, Jonathan; Lynas-Gray, Anthony E.A new silicon monoxide ( 28Si16O) line list covering infrared, visible, and ultraviolet regions called SiOUVenIR is presented. This line list extends the infrared EBJT ExoMol line list by including vibronic transitions to the A 1 and E 1+ electronic states. Strong perturbations to the A 1 band system are accurately modelled through the treatment of six dark electronic states: C 1−, D 1 , a 3+, b 3, e 3−, and d 3 . Along with the X 1+ ground state, these nine electronic states were used to build a comprehensive spectroscopic model of SiO using a combination of empirical and ab initio curves, including the potential energy (PE), spin–orbit, electronic angular momentum, and (transition) dipole moment curves. The ab initio PE and coupling curves, computed at the multireference configuration interaction level of theory, were refined by fitting their analytical representations to 2617 experimentally derived SiO energy levels determined from 97 vibronic bands belonging to the X–X, E–X, and A–X electronic systems through the MARVEL (Measured Active Rotational–Vibrational Energy Levels) procedure. 112 observed forbidden transitions from the C–X, D–X, e–X, and d–X bands were assigned using our predictions, and these could be fed back into the MARVEL procedure. The SiOUVenIR line list was computed using published ab initio transition dipole moments for the E–X and A–X bands; the line list is suitable for temperatures up to 10 000 K and for wavelengths longer than 140 nm. SiOUVenIR is available from www.exomol.com and the CDS data base.