Browsing by Author "Stander, Emily Amor"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Novel phages of healthy skin metaviromes from South Africa(Nature Publishing Group, 2018) van Zyl, Leonardo Joaquim; Abrahams, Yoonus; Stander, Emily Amor; Kirby-McCollough, Bronwyn; Jourdain, Roland; Clavaud, Cécile; Breton, Lionel; Trindade, MarlaRecent skin metagenomic studies have investigated the harbored viral diversity and its possible influence on healthy skin microbial populations, and tried to establish global patterns of skin-phage evolution. However, the detail associated with the phages that potentially play a role in skin health has not been investigated. While skin metagenome and -metavirome studies have indicated that the skin virome is highly site specific and shows marked interpersonal variation, they have not assessed the presence/absence of individual phages. Here, we took a semi-culture independent approach (metaviromic) to better understand the composition of phage communities on skin from South African study participants. Our data set adds over 130 new phage species of the skin to existing databases. We demonstrated that identical phages were present on different individuals and in different body sites, and we conducted a detailed analysis of the structural organization of these phages. We further found that a bacteriophage related to the Staphylococcus capitis phage Stb20 may be a common skin commensal virus potentially regulating its host and its activities on the skinItem Transcriptomics of the Rooibos (Aspalathus linearis) Species Complex(MDPI, 2020) Stander, Emily Amor; Williams, Wesley; Mgwatu, Yamkela; Hesse, Uljana; van Heusden, PeterRooibos (Aspalathus linearis), widely known as a herbal tea, is endemic to the Cape Floristic Region of South Africa (SA). It produces a wide range of phenolic compounds that have been associated with diverse health-promoting properties of the plant. The species comprises several growth forms that differ in their morphology and biochemical composition, only one of which is cultivated and used commercially. Here, we established methodologies for non-invasive transcriptome research of wild-growing South African plant species, including (1) harvesting and transport of plant material suitable for RNA sequencing; (2) inexpensive, high-throughput biochemical sample screening; (3) extraction of high-quality RNA from recalcitrant, polysaccharide- and polyphenol-rich plant material; and (4) biocomputational analysis of Illumina sequencing data, together with the evaluation of programs for transcriptome assembly (Trinity, IDBA-Trans, SOAPdenovo-Trans, CLC), protein prediction, as well as functional and taxonomic transcript annotation. In the process, we established a biochemically characterized sample pool from 44 distinct rooibos ecotypes (1–5 harvests) and generated four in-depth annotated transcriptomes (each comprising on average ≈86,000 transcripts) from rooibos plants that represent distinct growth forms and differ in their biochemical profiles. These resources will serve future rooibos research and plant breeding endeavors.