Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse UWCScholar
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Smith, Mathew"

Now showing 1 - 6 of 6
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Cosmology with photometrically classified type IA supernovae from the SDSS-II supernova survey
    (The American Astronomical Society, 2013) Campbell, Heather; D’Andrea, Chris B.; Nichol, Robert C.; Sako, Masao; Smith, Mathew
    We present the cosmological analysis of 752 photometrically–classified Type Ia Supernovae (SNe Ia) obtained from the full Sloan Digital Sky Survey II (SDSS-II) Supernova (SN) Survey, supplemented with host–galaxy spectroscopy from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Our photometric–classificationmethod is based on the SN typing technique of Sako et al. (2011), aided by host galaxy redshifts (0.05 < z < 0.55). SNANA simulations of our methodology estimate that we have a SN Ia typing efficiency of 70.8%, with only 3.9% contamination from core-collapse (non-Ia) SNe. We demonstrate that this level of contamination has no effect on our cosmological constraints. We quantify and correct for our selection effects (e.g., Malmquist bias) using simulations. When fitting to a flat _CDM cosmological model, we find that our photometric sample alone gives Ωm = 0.24+0.07/−0.05 (statistical errors only). If we relax the constraint on flatness, then our sample provides competitive joint statistical constraints on Ωm and Ω∆, comparable to those derived from the spectroscopically- confirmed three-year Supernova Legacy Survey (SNLS3). Using only our data, the statistics–only result favors an accelerating universe at 99.96% confidence. Assuming a constant wCDM cosmological model, and combining with H0, CMB and LRG data, we obtain w = −0.96+0.10/−0.10, Ωm = 0.29+0.02/−0.02 and Ωk = 0.00+0.03/−0.02 (statistical errors only), which is competitive with similar spectroscopically confirmed SNe Ia analyses. Overall this comparison is reassuring, considering the lower redshift leverage of the SDSS-II SN sample (z < 0.55) and the lack of spectroscopic confirmation used herein. These results demonstrate the potential of photometrically–classified SNe Ia samples in improving cosmological constraints.
  • Loading...
    Thumbnail Image
    Item
    The effect of weak lensing on distance estimates from supernovae
    (American Astronomical Society, 2013) Smith, Mathew
    Using a sample of 608 Type Ia supernovae from the SDSS-II and BOSS surveys, combined with a sample of foreground galaxies from SDSS-II, we estimate the weak lensing convergence for each supernova line of sight. We find that the correlation between this measurement and the Hubble residuals is consistent with the prediction from lensing (at a significance of 1.7?). Strong correlations are also found between the residuals and supernova nuisance parameters after a linear correction is applied. When these other correlations are taken into account, the lensing signal is detected at 1.4?. We show, for the first time, that distance estimates from supernovae can be improved when lensing is incorporated, by including a new parameter in the SALT2 methodology for determining distance moduli. The recovered value of the new parameter is consistent with the lensing prediction. Using cosmic microwave background data from WMAP7, H0 data from Hubble Space Telescope and Sloan Digital Sky Survey (SDSS) Baryon acoustic oscillations measurements, we find the best-fit value of the new lensing parameter and show that the central values and uncertainties on ?m and w are unaffected. The lensing of supernovae, while only seen at marginal significance in this low-redshift sample, will be of vital importance for the next generation of surveys, such as DES and LSST, which will be systematics-dominated.
  • Loading...
    Thumbnail Image
    Item
    Null tests of the cosmological constant using supernovae
    (American Physical Society, 2014) Yahya, Sahba; Seikel, Marina; Clarkson, Chris; Maartens, Roy; Smith, Mathew
    The standard concordance model of the Universe is based on the cosmological constant as the driver of accelerating expansion. This concordance model is being subjected to a growing range of inter-locking observations. In addition to using generic observational tests, one can also design tests that target the specific properties of the cosmological constant. These null tests do not rely on parametrizations of observables, but focus on quantities that are constant only if dark energy is a cosmological constant. We use supernova data in null tests that are based on the luminosity distance. In order to extract derivatives of the distance in a model-independent way, we use Gaussian Processes. We find that the concordance model is compatible with the Union 2.1 data, but the error bars are fairly large. Simulated datasets are generated for the DES supernova survey and we show that this survey will allow for a sharper null test of the cosmological constant if we assume the Universe is flat. Allowing for spatial curvature degrades the power of the null test.
  • Loading...
    Thumbnail Image
    Item
    Probing the bias of radio sources at high redshift
    (Oxford University Press, 2013) Passmoor, S.; Cress, Catherine; Faltenbacher, Andreas; Johnston, Russell; Smith, Mathew; Ratsimbazafy, Ando; Hoyle, Ben
    The relationship between the clustering of dark matter and that of luminous matter is often described using the bias parameter. Here, we provide a new method to probe the bias of intermediate-to-high-redshift radio continuum sources for which no redshift information is available. We matched radio sources from the Faint Images of the Radio Sky at Twenty centimetres survey data to their optical counterparts in the Sloan Digital Sky Survey to obtain photometric redshifts for the matched radio sources.We then use the publicly available semi-empirical simulation of extragalactic radio continuum sources (S3) to infer the redshift distribution for all FIRST sources and estimate the redshift distribution of unmatched sources by subtracting the matched distribution from the distribution of all sources. We infer that the majority of unmatched sources are at higher redshifts than the optically matched sources and demonstrate how the angular scales of the angular two-point correlation function can be used to probe different redshift ranges. We compare the angular clustering of radio sources with that expected for dark matter and estimate the bias of different samples.
  • Loading...
    Thumbnail Image
    Item
    Properties of Type Ia supernovae inside rich galaxy clusters
    (Oxford University Press, 2013) Xavier, Henrique S.; Gupta, Ravi R.; Smith, Mathew; Sako, Masao; D’Andrea, Chris B.; Frieman, Joshua A.; Galbany, Lluis; Garnavich, Peter M.; Marriner, John; Nichol, Robert C.; Olmstead, Matthew D.; Schneider, Donald P.
    We used the Gaussian Mixture Brightest Cluster Galaxy catalogue and Sloan Digital Sky Survey-II supernovae data with redshifts measured by the Baryon Oscillation Spectroscopic Survey to identify 48 Type Ia supernovae (SNe Ia) residing in rich galaxy clusters and compare their properties with 1015 SNe Ia in the field. Their light curves were parametrized by the SALT2 model and the significance of the observed differences was assessed by a resampling technique. To test our samples and methods, we first looked for known differences between SNe Ia residing in active and passive galaxies. We confirm that passive galaxies host SNe Ia with smaller stretch, weaker colour–luminosity relation [β of 2.54(22) against 3.35(14)], and that are ∼0.1 mag more luminous after stretch and colour corrections. We show that only 0.02 per cent of random samples drawn from our set of SNe Ia in active galaxies can reach these values. Reported differences in the Hubble residuals scatter could not be detected, possibly due to the exclusion of outliers. We then show that, while most field and cluster SNe Ia properties are compatible at the current level, their stretch distributions are different (∼3σ): besides having a higher concentration of passive galaxies than the field, the cluster’s passive galaxies host SNe Ia with an average stretch even smaller than those in field passive galaxies (at 95 per cent confidence).We argue that the older age of passive galaxies in clusters is responsible for this effect since, as we show, old passive galaxies host SNe Ia with smaller stretch than young passive galaxies (∼4σ).
  • Loading...
    Thumbnail Image
    Item
    SN Ia host galaxy properties from Sloan Digital Sky Survey-II spectroscopy
    (Oxford University Press, 2013) Johansson, Jonas; Thomas, Daniel; Smith, Mathew; Pforr, Janine; Maraston, Claudia; Nichol, Robert C.; Lampeitl, Hubert; Beifiori, Alessandra; Gupta, Ravi R.; Schneider, Donald P.
    We study the stellar populations of Type Ia supernova (SN Ia) host galaxies using Sloan Digital Sky Survey (SDSS)-II spectroscopy. The main focus is on the relationships of SN Ia properties with stellar velocity dispersion and the stellar population parameters age, metallicity and element abundance ratios. We concentrate on a sub-sample of 84 SNe Ia from the SDSS-II Supernova Survey and find that SALT2 stretch factor values show the strongest dependence on stellar population age. Hence, more luminous SNe Ia appear in younger stellar progenitor systems. No statistically significant trends in the Hubble residual with any of the stellar population parameters studied are found. Moreover, the method of photometric stellar mass derivation affects the Hubble residual–mass relationship. For an extended sample (247 objects), including SNe Ia with SDSS host galaxy photometry only, the Hubble residual–mass relationship behaves as a sloped step function. In the high-mass regime, probed by our host spectroscopy sample, this relationship is flat. Below a stellar mass of ∼2 × 1010M , i.e. close to the evolutionary transition mass of low-redshift galaxies, the trend changes dramatically such that lower mass galaxies possess lower luminosity SNe Ia after light-curve corrections. The sloped step function of the Hubble residual–mass relationship should be accounted for when using stellar mass as a further parameter for minimizing the Hubble residuals.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback