Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse UWCScholar
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Sibanyoni, J.M."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Hydrogen absorption study of high-energy reactive ball milled Mg composites with palladium additives
    (Elsevier, 2013) Williams, M.; Sibanyoni, J.M.; Lototskyy, Mykhaylo; Pollet, Bruno G.
    Hydrogenation behaviour, structure, morphology and dehydrogenation/re-hydrogenation performances of Mg–Pd nanocomposites prepared by high-energy reactive ball milling in H2 (HRBM) of Mg in the presence of amorphous and crystalline Pd black (0.1–5 wt.%) were studied. Improvements of hydrogenation kinetics during HRBM were observed only for the materials prepared using crystalline Pd black. The obtained nanocomposites were characterised by modest improvements in their dehydrogenation and re-hydrogenation performances associated with the formation of Mg–Pd intermetallides.
  • Loading...
    Thumbnail Image
    Item
    Magnesium–carbon hydrogen storage hybrid materials produced by reactive ball milling in hydrogen
    (Elsevier, 2013) Lototskyy, Mykhaylo; Sibanyoni, J.M.; Denys, R.V.; Williams, M.; Pollet, Bruno G.; Yartys, V.A.
    Time-resolved studies uncovered kinetics and mechanism of Mg–hydrogen interactions during High energy reactive ball milling in hydrogen (HRBM) in presence of various types of carbon, including graphite (G), activated carbon (AC), multi-wall carbon nanotubes (MWCNT), expandable (EG) and thermally-expanded (TEG) graphite. Introduction of carbon significantly changes the hydrogenation behaviour, which becomes strongly dependent on the nature and amount of carbon additive. For the materials containing 1 wt.% AC or TEG, and 5 wt.% MWCNT, the hydrogenation becomes superior to that for the individual magnesium and finishes within 1 h. Analysis of the data indicates that carbon acts as a carrier of the ‘‘activated’’ hydrogen by a mechanism of spill-over. For Mg–G the hydrogenation starts from an incubation period and proceeds slower. An increase in the content of EG and TEG above 1 wt.% results in the deterioration of the hydrogenation kinetics. The effect of carbon additives has roots in their destruction during the HRBM to form graphene layers encapsulating the MgH2 nanoparticles and preventing the grain growth. This results in an increase of absorption–desorption cycle stability and a decrease of the MgH2 crystallite size in the re-hydrogenated Mg–C hybrid materials (40–125 nm) as compared to Mg alone (180 nm).

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback