Browsing by Author "Sibanda, M"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Discrimination of tomato plants (solanum lycopersicum) grown under anaerobic baffled reactor effluent, nitrified urine concentrate and commercial hydroponic fertilizer regimes using multi-source satellite data(ISPRS, 2019) Sibanda, M; Mutanga, O; Dube, TWe evaluate the detection and discriminative strength of three different satellite spectral settings, namely, HyspIRI, the forthcoming Landsat 9 and Sentinel 2-MSI, in mapping tomato (Solanum lycopersicum) plants grown under hydroponic system using humanexcreta derived materials (HEDM), namely, anaerobic baffled reactor (ABR) effluent and nitrified urine concentrate (NUC) and commercial hydroponic fertilizer mix (CHFM) as nutrient sources. Partial least squares – discriminant analysis (PLS-DA) and discriminant analysis (DA) were applied to discriminate tomatoes grown under these different nutrient sources. Results of this study showed that spectral settings of HyspIRI sensor can better discriminate tomatoes grown under different fertilizer regimes when compared to Landsat 9 OLI and Sentinel-2 MSI spectral configurations. For instance, based on DA algorithm, HyspIRI exhibited high overall accuracy of 0.99 and a kappa statistic of 0.99 whereas Landsat OLI and Sentinel-2 MSI exhibited over accuracies of 0.94 and 0.95 as well as kappa statistics of 0.79 and 0.85, respectively. Further, the performance of DA was significantly different (α = 0.05) from that of PLS-DA based on the MaNemar tests. Overall, the performance of HyspIRI, Landsat 9 OLI-2 and Sentinel-2 MSI data seem to bring new opportunities for crop monitoring at farm scale.Item Evaluation of land suitability methods with reference to neglected and underutilised crop species: A scoping review(MDPI, 2021) Sibanda, M; Mugiyo, H; Chimonyo, V.G.PIn agriculture, land use and land classification address questions such as �where�, �why� and �when� a particular crop is grown within a particular agroecology. To date, there are several land suitability analysis (LSA) methods, but there is no consensus on the best method for crop suitability analysis. We conducted a scoping review to evaluate methodological strategies for LSA. Secondary to this, we assessed which of these would be suitable for neglected and underutilised crop species (NUS). The review classified LSA methods reported in articles as traditional (26.6%) and modern (63.4%). Modern approaches, including multi-criteria decision-making (MCDM) methods such as analytical hierarchy process (AHP) (14.9%) and fuzzy methods (12.9%); crop simulation models (9.9%) and machine learning related methods (25.7%) are gaining popularity over traditional methods. The MCDM methods, namely AHP and fuzzy, are commonly applied to LSA while crop models and machine learning related methods are gaining popularity. A total of 67 parameters from climatic, hydrology, soil, socio-economic and landscape properties are essential in LSA. Unavailability and the inclusion of categorical datasets from social sources is a challenge.Item The Utility of the Upcoming HyspIRI’s Simulated Spectral Settings in Detecting Maize Gray Leafy Spot in Relation to Sentinel-2 MSI, VENµS, and Landsat 8 OLI Sensors(UWC, 2019) Sibanda, MAbstract: Considering the high maize yield loses caused by incidences of disease, as well as incomprehensive monitoring initiatives in crop farming, there is a need for spatially explicit, cost-effective, and consistent approaches for monitoring, as well as for forecasting, food-crop diseases, such as maize Gray Leaf Spot. Such approaches are valuable in reducing the associated economic losses while fostering food security. In this study, we sought to investigate the utility of the forthcoming HyspIRI sensor in detecting disease progression of Maize Gray Leaf Spot infestation in relation to the Sentinel-2 MSI and Landsat 8 OLI spectral configurations simulated using proximally sensed data. Healthy, intermediate, and severe categories of maize crop infections by the Gray Leaf Spot disease were discriminated based on partial least squares–discriminant analysis (PLS-DA) algorithm. Comparatively, the results show that the HyspIRI’s simulated spectral settings slightly performed better than those of Sentinel-2 MSI, VENµS, and Landsat 8 OLI sensor. HyspIRI exhibited an overall accuracy of 0.98 compared to 0.95, 0.93, and 0.89, which were exhibited by Sentinel-2 MSI, VENµS, and Landsat 8 OLI sensor sensors, respectively. Furthermore, the results showed that the visible section, red-edge, and NIR covered by all the four sensors were the most influential spectral regions for discriminating different Maize Gray Leaf Spot infections. These findings underscore the potential value of the upcoming hyperspectral HyspIRI sensor in precision agriculture and forecasting of crop-disease epidemics, which are necessary to ensure food security