Browsing by Author "Seikel, Marina"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Constraints on anisotropic cosmic expansion from supernovae(Edp Sciences, 2013) Kalus, Benedict; Schwarz, Dominik J.; Seikel, Marina; Wiegand, AlexanderAIMS. We test the isotropy of the expansion of the Universe by estimating the hemispherical anisotropy of supernova type Ia (SN Ia) Hubble diagrams at low redshifts (z < 0.2). METHODS. We compare the best fit Hubble diagrams in pairs of hemispheres and search for the maximal asymmetric orientation. For an isotropic Universe, we expect only a small asymmetry due to noise and the presence of nearby structures. This test does not depend on the assumed content of the Universe, the assumed model of gravity, or the spatial curvature of the Universe. The expectation for possible fluctuations due to large scale structure is evaluated for the Λ cold dark matter (ΛCDM) model and is compared to the supernova data from the Constitution set for four different light curve fitters, thus allowing a study of the systematic effects. RESULTS. The expected order of magnitude of the hemispherical asymmetry of the Hubble expansion agrees with the observed one. The direction of the Hubble asymmetry is established at 95% confidence level (C.L.) using both, the MLCS2k2 and the SALT II light curve fitter. The highest expansion rate is found towards (ℓ, b) ≈ (−35◦, −19◦), which agrees with directions reported by other studies. Its amplitude is not in contradiction to expectations from the ΛCDM model. The measured Hubble anisotropy is ∆H/H ∼ 0.026. With 95% C.L. the expansion asymmetry is ∆H/H < 0.038.Item Null tests of the cosmological constant using supernovae(American Physical Society, 2014) Yahya, Sahba; Seikel, Marina; Clarkson, Chris; Maartens, Roy; Smith, MathewThe standard concordance model of the Universe is based on the cosmological constant as the driver of accelerating expansion. This concordance model is being subjected to a growing range of inter-locking observations. In addition to using generic observational tests, one can also design tests that target the specific properties of the cosmological constant. These null tests do not rely on parametrizations of observables, but focus on quantities that are constant only if dark energy is a cosmological constant. We use supernova data in null tests that are based on the luminosity distance. In order to extract derivatives of the distance in a model-independent way, we use Gaussian Processes. We find that the concordance model is compatible with the Union 2.1 data, but the error bars are fairly large. Simulated datasets are generated for the DES supernova survey and we show that this survey will allow for a sharper null test of the cosmological constant if we assume the Universe is flat. Allowing for spatial curvature degrades the power of the null test.Item Reconstruction of dark energy and expansion dynamics using Gaussian processes(IOP Publishing, 2012) Seikel, Marina; Clarkson, ChrisAn important issue in cosmology is reconstructing the effective dark energy equation of state directly from observations. With few physically motivated models, future dark energy studies cannot only be based on constraining a dark energy parameter space, as the errors found depend strongly on the parametrisation considered. We present a new non-parametric approach to reconstructing the history of the expansion rate and dark energy using Gaussian Processes, which is a fully Bayesian approach for smoothing data. We present a pedagogical introduction to Gaussian Processes, and discuss how it can be used to robustly differentiate data in a suitable way. Using this method we show that the Dark Energy Survey - Supernova Survey (DES) can accurately recover a slowly evolving equation of state to w = ±0.05 (95% CL) at z = 0 and ±0.25 at z = 0.7, with a minimum error of ±0.025 at the sweet-spot at z 0.16, provided the other parameters of the model are known. Errors on the expansion history are an order of magnitude smaller, yet make no assumptions about dark energy whatsoever.