Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse UWCScholar
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Roddatis, Vladimir"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Nanoscale mapping of ZrSiO4phases in naturally shocked zircon using electron energy loss spectroscopy
    (Walter de Gruyter GmbH, 2025) Kovaleva, Elizaveta; Roddatis, Vladimir; Syczewski, Marcin
    Coexistence in natural samples of zircon (ZrSiO4) and reidite (a high-pressure polymorph of ZrSiO4) is attributed to the effects of hypervelocity impact events. The grains and intergrowths in those minerals can be merely a few nanometers in size, which makes phase identification by standard methods of structure analysis difficult. However, analytical scanning transmission electron microscopy (STEM) utilizing electron energy loss spectroscopy (EELS) can provide important information on phase transition mechanisms and pressure-temperature conditions associated with the shock event at the nanoscale. Here we demonstrate that the valence as well as oxygen core-loss EELS can be employed for nanoscale mapping of zirconreidite distributions in zircon-reidite aggregates. Moreover, other accompanying phases, e. g., baddeleyite, could also be identified and mapped by this method. We further compare the EELS maps with a 4D-STEM nanobeam precession electron diffraction data, and demonstrate the advantages of the EELS mapping, which provides spatial resolution down to the nanometer scale and is independent of crystal orientation.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback