Browsing by Author "Richardson, Anthony J."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Beyond the jellyfish joyride and global oscillations: advancing jellyfish research(Oxford University Press, 2013) Gibbons, Mark J.; Richardson, Anthony J.There has been debate in the literature recently about increases in jellyfish populations in response to anthropogenic change, and this has attracted widespread media interest. Despite an international collaborative initiative [National Center for Ecological Analysis and Synthesis (NCEAS) working group on jellyfish blooms] to investigate trends in global jellyfish numbers, interpretations from the data remain ambiguous. Although this is perhaps to be expected given the diversity of potential drivers, the debate has not been helped by a general lack of rigorous data and loose definitions. There is a need for the community to refocus its attention on understanding the implications of jellyfish blooms and managing them, because regardless of global trends, jellyfish are a problem in some coastal marine ecosystems. Here, we provide recommendations for advancing jellyfish research. These include directing research toward better managing jellyfish impacts, expanding research into socio-economic consequences to grow the money available for research, building more operational and ecosystem models for tactical and strategic management, filling in the gaps in our biological knowledge for supporting models, improving surveillance using observing systems and making jellyfish research more rigorous. Some vehicles to address these recommendations include international standardization of methods, a discipline-specific journal for jellyfish research and an international science program on the global ecology and oceanography of jellyfish.Item Diet of whale sharks Rhincodon typus inferred from stomach content and signature fatty acid analyses(Inter Research, 2013) Rohner, Christoph A.; Couturier, Lydie I. E.; Richardson, Anthony J.; Pierce, Simon J.; Prebble, Clare E. M.; Gibbons, Mark J.; Nichols, Peter D.Whale sharks Rhincodon typus are large filter-feeders that are frequently observed feeding in surface zooplankton patches at their tropical and subtropical coastal aggregation sites. Using signature fatty acid (FA) analyses from their subdermal connective tissue and stomach content analysis, we tested whether whale sharks in Mozambique and South Africa predominantly feed on these prey and/or what other prey they target. Arachidonic acid (20:4ω6; mean ± SD = 17.8 ± 2.0% of total FA), 18:0 and 18:1ω9c were major FA of whale sharks, while in contrast, coastal epipelagic zooplankton collected near feeding whale sharks had 22:6ω3 (docosahexaenoic acid), 16:0 and 20:5ω3 (eicosapentaenoic acid) as major FA. Stomach contents of 3 stranded sharks were dominated by mysids (61 to 92% of prey items), another one by sergestids (56%), and a fifth stomach was empty. The dominant mysids (82% index of relative importance) were demersal zooplankton that migrate into the water column at night, suggesting night-time feeding by whale sharks. High levels of bacterial FA in whale sharks (5.3 ± 1.4% TFA), indicating a detrital link, potentially via demersal zooplankton, also support night-time foraging activity. High levels of oleic acid (16.0 ± 2.5%) in whale sharks and their similarity with FA profiles of shrimp, mysids, copepods and myctophid fishes from the meso- and bathypelagic zone suggest that whale sharks also forage in deep-water. Our findings suggest that, in the patchy food environment of tropical systems, whale sharks forage in coastal waters during the day and night, and in oceanic waters on deep-water zooplankton and fishes during their long-distance movements.Item Siphonophores from surface waters of the Colombian Pacific Ocean(Cambridge University Press, 2018) Uribe-Palomino, Julian; López, Raúl; Gibbons, Mark J.; Gusmão, Felipe; Richardson, Anthony J.Siphonophores are colonial hydrozoans that feed on zooplankton including fish larvae, and occur throughout the world’s oceans from surface waters to ocean depths. Here we describe the composition of hyponeustonic siphonophores (0 – 3 m depth) from the tropical Colombian Pacific Ocean based on 131 plankton samples collected between June – October from 2001 – 2004. Samples were dominated by species of Calycophorae, with only three species of Physonectae identified, consistent with their deeper depth distribution. Muggiaea atlantica, Chelophyes contorta, Diphyes dispar, and Eudoxoides mitra were the most common of the 21 species identified. We found moderate structuring of the siphonophore community by the salinity gradient from inshore to offshore, and greater richness during the night because of diel vertical migration. Temperature did not play a significant role in structuring siphonophore communities, perhaps because of the narrow temperature range observed (3.5 8C). We extend the known temperature and salinity range of several species, including M. atlantica up to temperatures of 28.6 8C and salinities down to 24.7. Interestingly, only polygastric stages of M. atlantica were found, suggesting the reproductive stage of M. atlantica in tropical waters might be found in deeper waters. Chelophyes appendiculata was rare in our study and C. contorta was common, providing evidence they have a potential allopatric relationship, with C. contorta replacing C. appendiculata in warm water. Finally, we found siphonophore abundance was positively related to the abundance of copepods and fish eggs, with the top 13 most abundant species all having positive correlations, suggesting siphonophore abundances are tightly controlled by their food.