Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse UWCScholar
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Pereao, Omoniyi"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Surface-modified polyacrylonitrile nanofibers as supports
    (Springer Verlag, 2017) Bode-Aluko, Chris Ademola; Pereao, Omoniyi; Fatoba, Olanrewaju; Petrik, Leslie
    Polyacrylonitrile nanofibers (PAN-nfs) are one of the most studied nanofibres because of their excellent characteristics, such as good mechanical strength, chemical resistance, and good thermal stability. Due to the easy dissolution in polar organic solvents, PAN-nfs are mostly produced via electrospinning technique. The electrospun PAN-nfs surfaces are relatively in-active and hydrophobic, and, therefore, hinder some potential applications; however, chemical surface modification reactions, such as amination, reduction, hydrolysis, and amidoximation, have been carried out on them. These reactions bring about functional groups, such as amine, hydroxyl, carboxylic, imine etc, to the surface PAN-nfs and invariably make their surfaces active and hydrophilic. The surface-modified PAN-nfs have been used as supports for organic compounds, enzymes, and antibodies in biological studies. They have also been used for immobilization of various organic ligands for adsorption of metal ions in water. Furthermore, because of their ability to complex metal ions, several surface-modified PAN-nfs have also been used as supports for transition metal catalysts in Fenton’s chemistry.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback