Browsing by Author "Peiris, Hiranya V."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Considerations for optimizing the photometric classification of supernovae from the Rubin observatory(IOP Publishing, 2022) Alves, Catarina S.; Peiris, Hiranya V.; Lochner, MichelleThe Vera C. Rubin Observatory will increase the number of observed supernovae (SNe) by an order of magnitude; however, it is impossible to spectroscopically confirm the class for all SNe discovered. Thus, photometric classification is crucial, but its accuracy depends on the not-yet-finalized observing strategy of Rubin Observatory’s Legacy Survey of Space and Time (LSST). We quantitatively analyze the impact of the LSST observing strategy on SNe classification using simulated multiband light curves from the Photometric LSST Astronomical Time-Series Classification Challenge (PLAsTiCC). First, we augment the simulated training set to be representative of the photometric redshift distribution per SNe class, the cadence of observations, and the flux uncertainty distribution of the test set. Then we build a classifier using the photometric transient classification library snmachine, based on wavelet features obtained from Gaussian process fits, yielding a similar performance to the winning PLAsTiCC entry. We study the classification performance for SNe with different properties within a single simulated observing strategy. We find that season length is important, with light curves of 150 days yielding the highest performance. Cadence also has an important impact on SNe classification; events with median inter-night gap <3.5 days yield higher classification performance. Interestingly, we find that large gaps (>10 days) in light-curve observations do not impact performance if sufficient observations are available on either side, due to the effectiveness of the Gaussian process interpolation. This analysis is the first exploration of the impact of observing strategy on photometric SN classification with LSST.Item Impact of Rubin observatory cadence choices on supernovae photometric classification(American Astronomical Society, 2023) Alves, Catarina S.; Peiris, Hiranya V.; Lochner, MichelleThe Vera C. Rubin Observatory’s Legacy Survey of Space and Time (LSST) will discover an unprecedented number of supernovae (SNe), making spectroscopic classification for all the events infeasible. LSST will thus rely on photometric classification, whose accuracy depends on the not-yet-finalized LSST observing strategy. In this work, we analyze the impact of cadence choices on classification performance using simulated multiband light curves. First, we simulate SNe with an LSST baseline cadence, a nonrolling cadence, and a presto-color cadence, which observes each sky location three times per night instead of twice. Each simulated data set includes a spectroscopically confirmed training set, which we augment to be representative of the test set as part of the classification pipeline. Then we use the photometric transient classification library snmachine to build classifiers. We find that the active region of the rolling cadence used in the baseline observing strategy yields a 25% improvement in classification performance relative to the background region. This improvement in performance in the actively rolling region is also associated with an increase of up to a factor of 2.7 in the number of cosmologically useful Type Ia SNe relative to the background region. However, adding a third visit per night as implemented in presto-color degrades classification performance due to more irregularly sampled light curves. Overall, our results establish desiderata on the observing cadence related to classification of full SNe light curves, which in turn impacts photometric SNe cosmology with LSST.