Browsing by Author "Oyewusi, Habeebat Adekilekun"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item In silico analysis of a putative dehalogenase from the genome of halophilic bacterium Halomonas smyrnensis AAD6T(Taylor and Francis, 2022) Oyewusi, Habeebat Adekilekun; Akinyende, Kolajo Adedamola; Wahab, Roswanira AbdulMicrobial-assisted removal of natural or synthetic pollutants is the prevailing green, low-cost technology to treat polluted environments. However, the challenge with enzyme-assisted bioremediation is the laborious nature of dehalogenase-producing microorganisms’ bioprospecting. This bottleneck could be circumvented by in-silico analysis of certain microorganisms’ whole-genome sequences to predict their protein functions and enzyme versatility for improved biotechnological applications. Herein, this study performed structural analysis on a dehalogenase (DehHsAAD6) from the genome of Halomonas smyrnensis AAD6 by molecular docking and molecular dynamic (MD) simulations. Other bioinformatics tools were also employed to identify substrate preference (haloacids and haloacetates) of the DehHsAAD6. The DehHsAAD6 preferentially degraded haloacids and haloacetates ( 3.2–4.8 kcal/ mol) and which formed three hydrogen bonds with Tyr12, Lys46, and Asp182. MD simulations data revealed the higher stability of DehHsAAD6-haloacid- (RMSD 0.22–0.3 nm) and DehHsAAD6-haloacetates (RMSF 0.05–0.14nm) complexes, with the DehHsAAD6-L-2CP complex being the most stable. The detail of molecular docking calculations ranked complexes with the lowest binding free energies as: DehHsAAD6-L-2CP complex ( 4.8 kcal/mol) ¼ DehHsAAD6-MCA ( 4.8 kcal/mol) < DehHsAAD6-TCA ( 4.5 kcal/mol) < DehHsAAD6-2,3-DCP ( 4.1 kcal/mol) < DehHsAAD6-D-2CP ( 3.9 kcal/mol) < DehHsAAD6-2,2-DCP ( 3.5 kcal/mol) < DehHsAAD6-3CP ( 3.2 kcal/mol). In a nutshell, the study findings offer valuable perceptions into the elucidation of possible reaction mechanisms of dehalogenases for extended substrate specificity and higher catalytic activity.Item In vitro evaluation of the anti-diabetic potential of aqueous acetone Helichrysum petiolare extract (AAHPE) with molecular docking relevance in diabetes mellitus(MDPI, 2021-12) Akinyede, Kolajo Adedamola; Oyewusi, Habeebat Adekilekun; Hughes, Gail Denise; Ekpo, Okobi EkoDiabetes mellitus (DM) is a chronic metabolic condition that can lead to significant complications and a high fatality rate worldwide. Efforts are ramping up to find and develop novel α-glucosidase and α-amylase inhibitors that are both effective and potentially safe. Traditional methodologies are being replaced with new techniques that are less complicated and less time demanding; yet, both the experimental and computational strategies are viable and complementary in drug discovery and development. As a result, this study was conducted to investigate the in vitro anti-diabetic potential of aqueous acetone Helichrysum petiolare and B.L Burtt extract (AAHPE) using a 2-NBDG, 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl) amino)-2-deoxy-D-glucose uptake assay. In addition, we performed molecular docking of the flavonoid constituents identified and quantified by liquid chromatography-mass spectrometry (LC-MS) from AAHPE with the potential to serve as effective and safe α-amylase and α-glucosidase inhibitors, which are important in drug discovery and development. The results showed that AAHPE is a potential inhibitor of both α-amylase and α-glucosidase, with IC50 values of 46.50 ± 6.17 (µg/mL) and 37.81 ± 5.15 (µg/mL), respectively. This is demonstrated by a significant increase in the glucose uptake activity percentage in a concentrationdependent manner compared to the control, with the highest AAHPE concentration of 75 µg/mL of glucose uptake activity being higher than metformin, a standard anti-diabetic drug, in the insulinresistant HepG2 cell line. The molecular docking results displayed that the constituents strongly bind α-amylase and α-glucosidase while achieving better binding affinities that ranged from ∆G = −7.2 to −9.6 kcal/mol (compared with acarbose ∆G = −6.1 kcal/mol) for α-amylase, and ∆G = −7.3 to −9.0 kcal/mol (compared with acarbose ∆G = −6.3 kcal/mol) for α-glucosidase. This study revealed the potential use of the H. petiolare plant extract and its phytochemicals, which could be explored to develop potent and safe α-amylase and α-glucosidase inhibitors to treat postprandial glycemic levels in diabetic patients.