Browsing by Author "Omoruyi, Sylvester Ifeanyi"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item 4-oxatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione derivatives as nmda receptor- And VGCC blockers with neuroprotective potential(MPDI, 2020) Egunlusi, Ayodeji O.; Malan, Sarel F.; Omoruyi, Sylvester IfeanyiThe impact of excitotoxicity mediated by N-methyl-D-aspartate (NMDA) receptor overactivation and voltage gated calcium channel (VGCC) depolarization is prominent among the postulated processes involved in the development of neurodegenerative disorders. NGP1-01, a polycyclic amine, has been shown to be neuroprotective through modulation of the NMDA receptor and VGCC, and attenuation of MPP+-induced neurotoxicity. Recently, we reported on the calcium modulating effects of tricycloundecene derivatives, structurally similar to NGP1-01, on the NMDA receptor and VGCC of synaptoneurosomes. In the present study, we investigated novel 4-oxatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione derivatives for their cytotoxicity, neuroprotective effects via attenuation of MPP+-induced neurotoxicity and calcium influx inhibition abilities through the NMDA receptor and VGCC using neuroblastoma SH-SY5Y cells. All compounds, in general, showed low or no toxicity against neuroblastoma cells at 10-50 μM concentrations. At 10 μM, all compounds significantly attenuated MPP+-induced neurotoxicity as evident by the enhancement in cell viability between 23.05 ± 3.45% to 53.56 ± 9.29%.Item Aqueous leaf extract of Sutherlandia frutescens attenuates ROS-induced apoptosis and loss of mitochondrial membrane potential in MPP+-treated SH-SY5Y cells(University of Benin, 2020) Ekpo, E. O.; Enogieru, Adaze Bijou; Omoruyi, Sylvester IfeanyiTo investigate the neuroprotective activity of the aqueous extract of Sutherlandia frutescens (SF) against 1-methyl-4-phenylpyridinium (MPP+)-induced toxicity in SH-SY5Y neuroblastoma cells. Methods: SH-SY5Y neuroblastoma cells were divided into different treatment groups: untreated cells, cells treated with MPP+ alone (2 mM), cells pretreated with SF (20 μg) prior to MPP+ (2 mM) treatment and cells treated with SF (20 μg) alone. Twenty-four hours after treatment with MPP+, cell viability was assessed by MTT assay, and changes in cell morphology, intracellular reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP) as well as caspases 3/7 and 9 activities were determined. Results: Treatment of SH-SY5Y cells with MPP+ alone significantly altered cellular morphology, increased ROS production (p = 0.005), induced a significant loss of MMP (p = 0.0011) and caused significant apoptotic cell death, via the activation of caspases 3/7 and 9 (p ≤ 0.0359). These effects were however significantly (p ≤ 0.0359) attenuated in cells pre-treated with the aqueous leaf extract of SF, indicating the possible neuroprotective activity of the SF extract.Item In vitro evaluation of the antiproliferative activity of Carpobrotus edulis on human neuroblastoma cells(Elsivier, 2021) Ekpo, Okobi Eko; Enogieru, Adaze Bijou; Omoruyi, Sylvester IfeanyiNeuroblastoma is a solid neuroendocrine tumour located outside the cranial cavity and contributes about 15% of all cancer‑associated deaths in children. Treatment of neuroblastoma is quite challenging and involves the use of chemotherapy, surgery and radiotherapy. Despite treatment strategies, systemic toxicity are setbacks to patient well-being, hence the need for a new and affordable approach. Medicinal plants are of importance in the field of drug discovery for cancer as some notable anti-cancer agents have been isolated from them. In the present study, the anti-cancer activity of aqueous extract of Carpobrotus edulis (C. edulis), a ground-creeping edible medicinal plant was investigated in SK-N-BE(2) and SH-SY5Y neuroblastoma cells. The effect of C. edulis on cell viability and survival was determined using MTT (3-[4,5-dimethylthiazol-2-yl] 2,5 diphenyltetrazolium bromide) and clonogenic assays respectively. Apoptosis was determined using a Caspase-9 assay kit and flow cytometry was used to measure intracellular reactive oxygen species (ROS) and depolarization of mitochondrial membrane potential. The results show that C. edulis inhibits cell viability (IC50 of 0.86 mg/ml and 1.45 mg/ml for SK-N-BE (2) and SHSY5Y cells respectively) and colony formation in the neuroblastoma cells as well as induce apoptosis, which is evidenced by an increase in caspase-9 activity in the cells. C. edulis also led to a loss of mitochondrial membrane potential and increased production of ROS. Collectively, these results suggest that C. edulis induces cell death via induction of mitochondrial-mediated apoptosis and accumulation of intracellular ROS, thus providing a rationale for further investigations.