Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse UWCScholar
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ntlauzana, Asanda"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Electrochemical investigation of platinum nanoparticles supported on carbon nanotubes as cathode electrocatalysts for direct methanol fuel cell
    (University of the Western Cape, 2010) Ntlauzana, Asanda; Khotseng, L.; Ndungu, P.; Dept. of Chemistry; Faculty of Science
    The particles of the Pt metal were well dispersed on carbon nanotubes when EG was used and in isopropanol poor dispersion was observed and no further investigation was done on them. The platinum wt% on the supports observed from EDS was 21.8, 19.10 and 16.74wt% for Pt/EMWCNT, Pt/LPGCNT and Pt/ commercial CNT respectively. Pt/LPGMWCNT showed high electro-catalytic activity of 2.48 mA and active surface area of 76 m2/g, toward oxygen reduction, observed from cyclic voltammogram in iv sulfuric acid. Pt/LPGMWCNT also showed better tolerance toward methanol, however it was not highly active towards methanol, and hence the methanol oxidation peak current observed between 0.75 and 08 potential was the smallest. In this study a wide range of instruments was used to characterize the properties and behavior of Platinum nanoparticles on multi-wall carbon nanotubes. To add to the already mentioned, Scanning electrochemical microscopy (SEM), proton induced x-ray emission (PIXE), scanning electrochemical microscopy (SECM) and Brunauer-Emmett Tellar (BET) were also used.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback