Browsing by Author "Noukelag, Sandrine Kamdoum"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Influence of synthesis method on structural(Springer, 2023) Noukelag, Sandrine Kamdoum; Noukelag, Sandrine Kamdoum; Ngqoloda, Siphelo; Kotsedi, LebogangThis contribution reports on the development of two versatile and efcient methods, namely the green and gamma radiolysis for Fe-Ag nanoparticles (NPs) synthesis, characterization, and further their growth inhibition potential on some spoilage microorganisms. Green Ag/Fe2O3 NPs were obtained at Fe-Ag [3:1], annealing temperature of 800 °C for 2 h, and gamma irradiated Ag/Fe3O4 NPs were obtained at Fe-Ag [7:1], a 50 kGy dose. The characterization techniques were performed with these two samples whereby the sizes from crystallographic and microscopic analyses were 39.59 and 20.00 nm for Ag/Fe2O3 NPs, 28.57 and 15.37 nm for Ag/Fe3O4 NPs, respectively. The polycrystallinity nature observed from X-ray diffraction was in accordance with the selected area electron difraction. The vibrational properties confrmed the presence of bimetallic Fe-Ag NPs with the depiction of chemical bonds, Fe–O and Ag–O from attenuated total refection-Fourier transform infrared spectroscopy and elements Ag, Fe, O from energy-dispersive X-ray spectroscopy analyses. The magnetic properties carried out using a vibrating sample magnetometer suggested a superparamagnetic behavior for the Ag/Fe2O3 NPs and a ferromagnetic behavior for the Ag/Fe3O4 NPs. Overall, the green Ag/Fe2O3 NPs successfully inhibited the growth of spoilage yeasts Candida guilliermondii, Zygosaccharomyces fermentati, Zygosaccharomyces forentinus, and spoilage molds Botrytis cinerea, Penicillium expansum, Alternaria alstroemeriae.Item Influence of Synthesis Method on Structural, Morphological, Magnetic, and Antimicrobial Properties of Fe-Ag Nanoparticles(Journal of Inorganic and Organometallic Polymers and Materials, 2023) Noukelag, Sandrine Kamdoum; Ngqoloda, Siphelo; Arendse, Christopher J; Mewa-Ngongang, MaxwellThis contribution reports on the development of two versatile and efficient methods, namely the green and gamma radiolysis for Fe-Ag nanoparticles (NPs) synthesis, characterization, and further their growth inhibition potential on some spoilage microorganisms. Green Ag/Fe2O3 NPs were obtained at Fe-Ag [3:1], annealing temperature of 800 °C for 2 h, and gamma irradiated Ag/Fe3O4 NPs were obtained at Fe-Ag [7:1], a 50 kGy dose. The characterization techniques were performed with these two samples whereby the sizes from crystallographic and microscopic analyses were 39.59 and 20.00 nm for Ag/Fe2O3 NPs, 28.57 and 15.37 nm for Ag/Fe3O4 NPs, respectively. The polycrystallinity nature observed from X-ray diffraction was in accordance with the selected area electron diffraction. The vibrational properties confirmed the presence of bimetallic Fe-Ag NPs with the depiction of chemical bonds, Fe–O and Ag–O from attenuated total reflection-Fourier transform infrared spectroscopy and elements Ag, Fe, O from energy-dispersive X-ray spectroscopy analyses. The magnetic properties carried out using a vibrating sample magnetometer suggested a superparamagnetic behavior for the Ag/Fe2O3 NPs and a ferromagnetic behavior for the Ag/Fe3O4 NPs. Overall, the green Ag/Fe2O3 NPs successfully inhibited the growth of spoilage yeasts Candida guilliermondii, Zygosaccharomyces fermentati, Zygosaccharomyces florentinus, and spoilage molds Botrytis cinerea, Penicillium expansum, Alternaria alstroemeriae.Item Infuence of Synthesis Method on Structural, Morphological, Magnetic, and Antimicrobial Properties of Fe‑Ag Nanoparticles(Springer, 2023) Noukelag, Sandrine Kamdoum; Ngqoloda, Siphelo; Mewa‑Ngongang, Maxwell; Kotsedi, Lebogang; Razanamahandry, Lovasoa Christine; Ntwamp, Seteno; Arendse, Christopher; Maaza, MalikThis contribution reports on the development of two versatile and efcient methods, namely the green and gamma radiolysis for Fe-Ag nanoparticles (NPs) synthesis, characterization, and further their growth inhibition potential on some spoilage microorganisms. Green Ag/Fe2O3 NPs were obtained at Fe-Ag [3:1], annealing temperature of 800 °C for 2 h, and gamma irradiated Ag/Fe3O4 NPs were obtained at Fe-Ag [7:1], a 50 kGy dose. The characterization techniques were performed with these two samples whereby the sizes from crystallographic and microscopic analyses were 39.59 and 20.00 nm for Ag/Fe2O3 NPs, 28.57 and 15.37 nm for Ag/Fe3O4 NPs, respectively. The polycrystallinity nature observed from X-ray diffraction was in accordance with the selected area electron difraction. The vibrational properties confrmed the presence of bimetallic Fe-Ag NPs with the depiction of chemical bonds, Fe–O and Ag–O from attenuated total refection-Fourier transform infrared spectroscopy and elements Ag, Fe, O from energy-dispersive X-ray spectroscopy analyses. The magnetic properties carried out using a vibrating sample magnetometer suggested a superparamagnetic behavior for the Ag/Fe2O3 NPs and a ferromagnetic behavior for the Ag/Fe3O4 NPs. Overall, the green Ag/Fe2O3 NPs successfully inhibited the growth of spoilage yeasts Candida guilliermondii, Zygosaccharomyces fermentati, Zygosaccharomyces forentinus, and spoilage molds Botrytis cinerea, Penicillium expansum, Alternaria alstroemeriae.Item Synthesis of bimetallic immiscible alloy nanoparticles through green and gamma radiolysis approaches for environmental remediation applications(University of the Western Cape, 2022) Noukelag, Sandrine Kamdoum; Maaza, MalikThe synthesis of bimetallic immiscible alloy nanoparticles (NPs) using versatile routes, is a major concern since physio-chemical methods are not environmentally benign. Breaking down the immiscibility would generate NPs with remarkable properties and consequently more applications. As a result, it urges the development of one-step, eco-friendly, efficient, and reliable methods for getting more metastable bimetallic alloys from immiscible metals. To that aim, unconventional approaches such as green and gamma radiolysis were considered as the paths forward in this thesis. The wide immiscibility gaps of iron-silver (Fe-Ag), and iron-zinc (Fe-Zn) led to their selectionItem Synthesis of bimetallic immiscible alloy nanoparticles through green and gamma radiolysis approaches for environmental remediation applications(University of the Western Cape, 2022) Noukelag, Sandrine Kamdoum; Maaza, MalikThe synthesis of bimetallic immiscible alloy nanoparticles (NPs) using versatile routes, is a major concern since physio-chemical methods are not environmentally benign. Breaking down the immiscibility would generate NPs with remarkable properties and consequently more applications. As a result, it urges the development of one-step, eco-friendly, efficient, and reliable methods for getting more metastable bimetallic alloys from immiscible metals. To that aim, unconventional approaches such as green and gamma radiolysis were considered as the paths forward in this thesis. The wide immiscibility gaps of iron-silver (Fe-Ag), and iron-zinc (Fe-Zn) led to their selectionItem Synthesis of bimetallic immiscible alloy nanoparticles through green and gamma radiolysis approaches for environmental remediation applications(University of the Western Cape, 2022) Noukelag, Sandrine Kamdoum; Arendse, ChristopherThe synthesis of bimetallic immiscible alloy nanoparticles (NPs) using versatile routes, is a major concern since physio-chemical methods are not environmentally benign. Breaking down the immiscibility would generate NPs with remarkable properties and consequently more applications. As a result, it urges the development of one-step, eco-friendly, efficient, and reliable methods for getting more metastable bimetallic alloys from immiscible metals. To that aim, unconventional approaches such as green and gamma radiolysis were considered as the paths forward in this thesis. The wide immiscibility gaps of iron-silver (Fe-Ag), and iron-zinc (Fe-Zn) led to their selection.