Browsing by Author "Nichol, Robert C."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Cosmology with photometrically classified type IA supernovae from the SDSS-II supernova survey(The American Astronomical Society, 2013) Campbell, Heather; D’Andrea, Chris B.; Nichol, Robert C.; Sako, Masao; Smith, MathewWe present the cosmological analysis of 752 photometrically–classified Type Ia Supernovae (SNe Ia) obtained from the full Sloan Digital Sky Survey II (SDSS-II) Supernova (SN) Survey, supplemented with host–galaxy spectroscopy from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). Our photometric–classificationmethod is based on the SN typing technique of Sako et al. (2011), aided by host galaxy redshifts (0.05 < z < 0.55). SNANA simulations of our methodology estimate that we have a SN Ia typing efficiency of 70.8%, with only 3.9% contamination from core-collapse (non-Ia) SNe. We demonstrate that this level of contamination has no effect on our cosmological constraints. We quantify and correct for our selection effects (e.g., Malmquist bias) using simulations. When fitting to a flat _CDM cosmological model, we find that our photometric sample alone gives Ωm = 0.24+0.07/−0.05 (statistical errors only). If we relax the constraint on flatness, then our sample provides competitive joint statistical constraints on Ωm and Ω∆, comparable to those derived from the spectroscopically- confirmed three-year Supernova Legacy Survey (SNLS3). Using only our data, the statistics–only result favors an accelerating universe at 99.96% confidence. Assuming a constant wCDM cosmological model, and combining with H0, CMB and LRG data, we obtain w = −0.96+0.10/−0.10, Ωm = 0.29+0.02/−0.02 and Ωk = 0.00+0.03/−0.02 (statistical errors only), which is competitive with similar spectroscopically confirmed SNe Ia analyses. Overall this comparison is reassuring, considering the lower redshift leverage of the SDSS-II SN sample (z < 0.55) and the lack of spectroscopic confirmation used herein. These results demonstrate the potential of photometrically–classified SNe Ia samples in improving cosmological constraints.Item Properties of Type Ia supernovae inside rich galaxy clusters(Oxford University Press, 2013) Xavier, Henrique S.; Gupta, Ravi R.; Smith, Mathew; Sako, Masao; D’Andrea, Chris B.; Frieman, Joshua A.; Galbany, Lluis; Garnavich, Peter M.; Marriner, John; Nichol, Robert C.; Olmstead, Matthew D.; Schneider, Donald P.We used the Gaussian Mixture Brightest Cluster Galaxy catalogue and Sloan Digital Sky Survey-II supernovae data with redshifts measured by the Baryon Oscillation Spectroscopic Survey to identify 48 Type Ia supernovae (SNe Ia) residing in rich galaxy clusters and compare their properties with 1015 SNe Ia in the field. Their light curves were parametrized by the SALT2 model and the significance of the observed differences was assessed by a resampling technique. To test our samples and methods, we first looked for known differences between SNe Ia residing in active and passive galaxies. We confirm that passive galaxies host SNe Ia with smaller stretch, weaker colour–luminosity relation [β of 2.54(22) against 3.35(14)], and that are ∼0.1 mag more luminous after stretch and colour corrections. We show that only 0.02 per cent of random samples drawn from our set of SNe Ia in active galaxies can reach these values. Reported differences in the Hubble residuals scatter could not be detected, possibly due to the exclusion of outliers. We then show that, while most field and cluster SNe Ia properties are compatible at the current level, their stretch distributions are different (∼3σ): besides having a higher concentration of passive galaxies than the field, the cluster’s passive galaxies host SNe Ia with an average stretch even smaller than those in field passive galaxies (at 95 per cent confidence).We argue that the older age of passive galaxies in clusters is responsible for this effect since, as we show, old passive galaxies host SNe Ia with smaller stretch than young passive galaxies (∼4σ).Item SN Ia host galaxy properties from Sloan Digital Sky Survey-II spectroscopy(Oxford University Press, 2013) Johansson, Jonas; Thomas, Daniel; Smith, Mathew; Pforr, Janine; Maraston, Claudia; Nichol, Robert C.; Lampeitl, Hubert; Beifiori, Alessandra; Gupta, Ravi R.; Schneider, Donald P.We study the stellar populations of Type Ia supernova (SN Ia) host galaxies using Sloan Digital Sky Survey (SDSS)-II spectroscopy. The main focus is on the relationships of SN Ia properties with stellar velocity dispersion and the stellar population parameters age, metallicity and element abundance ratios. We concentrate on a sub-sample of 84 SNe Ia from the SDSS-II Supernova Survey and find that SALT2 stretch factor values show the strongest dependence on stellar population age. Hence, more luminous SNe Ia appear in younger stellar progenitor systems. No statistically significant trends in the Hubble residual with any of the stellar population parameters studied are found. Moreover, the method of photometric stellar mass derivation affects the Hubble residual–mass relationship. For an extended sample (247 objects), including SNe Ia with SDSS host galaxy photometry only, the Hubble residual–mass relationship behaves as a sloped step function. In the high-mass regime, probed by our host spectroscopy sample, this relationship is flat. Below a stellar mass of ∼2 × 1010M , i.e. close to the evolutionary transition mass of low-redshift galaxies, the trend changes dramatically such that lower mass galaxies possess lower luminosity SNe Ia after light-curve corrections. The sloped step function of the Hubble residual–mass relationship should be accounted for when using stellar mass as a further parameter for minimizing the Hubble residuals.