Browsing by Author "Nadeem, Muhammad Azhar"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Common bean as a potential crop for future food security: an overview of past, current and future contributions in genomics, transcriptomics, transgenics and proteomics(Taylor & Francis Open Access, 2021) Nadeem, Muhammad Azhar; Yeken, Mehmet Zahit; Ludidi, NdikoCommon bean is an important legume crop having high quality protein, micronutrients, vitamins and antioxidants, which makes it a “grain of hope” for poor communities. Hence, a good number of breeding activities have been performed on the improvement of various key traits for years. However, recent advancements in molecular markers, sequencing technologies and the completion of the common bean genome sequence have opened numerous opportunities for fine mapping and gene characterization. The availability of these tools together with investigations of quantitative trait loci (QTL) and candidate genes for key traits such as morpho-agronomic, iron and zinc contents, cooking and quality traits, antioxidant activity, biotic and abiotic stresses pave the way to the development of new strategies for common bean genetic improvement. As a food source, it can contribute to the reduction of food scarcity worldwide in the coming years. Therefore, it is very important to take synergic efforts to integrate common bean genetic and genomic resources in breeding activities to ensure food security and contribute significantly to improved livelihoods in developing countries. Moreover, Kompetitive allele specific PCR (KASP) and CRISPR-Cas9 should be used to develop climate resilience common bean varieties. Here, we provide an overview of the evolution of common bean research by highlighting the past and recent advances in genomics, transgenics, transcriptomics and proteomics and also critically discuss the future prospects for further genetic improvement and better expansion of this crop.Item Genetic diversity, population structure and marker- trait association for 100-seed weight in international safflower panel using silicodart marker information(MDPI, 2020) Yang, Seung Hwan; Ali, Fawad; Nadeem, Muhammad AzharSafflower is an important oilseed crop mainly grown in the arid and semi-arid regions of the world. The aim of this study was to explore phenotypic and genetic diversity, population structure, and marker-trait association for 100-seed weight in 94 safflower accessions originating from 26 countries using silicoDArT markers. Analysis of variance revealed statistically significant genotypic effects (p < 0.01), while Turkey samples resulted in higher 100-seed weight compared to Pakistan samples. A Constellation plot divided the studied germplasm into two populations on the basis of their 100-seed weight. Various mean genetic diversity parameters including observed number of alleles (1.99), effective number of alleles (1.54), Shannon’s information index (0.48), expected heterozygosity (0.32), and unbiased expected heterozygosity (0.32) for the entire population exhibited sufficient genetic diversity using 12232 silicoDArT markers. Analysis of molecular variance (AMOVA) revealed that most of the variations (91%) in world safflower panel are due to differences within country groups. A model-based structure grouped the 94 safflower accessions into populations A, B, C and an admixture population upon membership coefficient.