Browsing by Author "Musil, Charles F."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Empirical and model derived respiration responses to climate in different soils of an arid South African ecosystem(2009) Nyaga, Justine Muhoro; Musil, Charles F.; Raitt, LincolnThis study examined the magnitude of soil CO2 efflux in an arid South African ecosystem, the flux responses as well as those of key limiting nutrients to soil temperature increases and moisture reductions consistent with a future climate change scenario, and compared measured soil respiration rates with those predicted with empirically and theoretically-based soil respiration models. Measurements of soil respiration rate, temperature, moisture, N and P contents were conducted monthly over a 12-month period in natural environments and those artificially manipulated with replicated open-top warming chambers (average 4.1oC increase) and precipitation exclusion chambers (average 30.1% decrease in rainfall, 26.2% decrease in fog and dewfall) distributed in five different soil-vegetation units.Measured soil respiration rates were over 3-fold less than those reported for temperate and tropical forest ecosystems with 61.5% of the total soil CO2 efflux contributed by root respiration (derived from the differences between moderately vegetated and sparsely vegetated areas) in moderately vegetated soils. Massive increases (up to 15 times) in soil CO2 efflux occurred during wet phases, but even these large CO2 pulses were only comparable in magnitude with soil CO2 effluxes reported for temperate semi-arid grasslands. There was considerable intra-annual and inter-site variability in the magnitude and direction of soil respiration and N and P responses to elevated temperatures and reduced precipitation levels with poor correspondence evident between soil CO2 efflux and soil organic matter content. Soil CO2 effluxes declined in response to precipitation exclusion by 7.1% over all sites and increased in response to warming by 42.1% over all sites. The large increase in response to warming was assisted by a 7.5% enhancement in soil moisture content due to precipitation interception by the chamber walls and its channelling to the soil surface.Relatively smaller respiration increases in response to warming occurred in moderately vegetated soils, these attributed to soil thermal insulation by the plant canopy cover. Soil P and N contents increased in response to warming by 11.3% and 13.3% respectively over all sites, with soil P declining in response to precipitation exclusion by 5.8% over all sites and soil N increasing in response to precipitation exclusion over all sites by 5.8%. Standard least squares regressions quantified the relationships between soil respiration rate and measured soil physical and chemical properties, and their interactions for each of the 5 soil-vegetation units. These relationships were incorporated in an empiricallybased soil respiration (EMR) model which was compared with a theoretically based generalized soil respiration model (GRESP). GRESP model functions included measured Q10 coefficients at soil moisture contents above field capacity, these assumed reduced by half for dry conditions, and maximum retentive and field capacities of soils. EMR modelled soil respiration rates displayed slightly better correspondence with measured soil respiration rates than GRESP modelled soil respiration rates. This apparent from the higher regression coefficients and lower sums of squared residuals, with EMR model residuals also more closely approximating normal distributions. However, despite the EMR model’s slight superiority, it was concluded that more precise laboratory-based measurements of soil retentive and field capacities and their Q10 coefficients at different soil moisture contents could improve the GRESP model’s accuracy thereby providing a more convenient and uncomplicated means of predicting respiration responses to current and future climates over a wide range of arid soil typesItem Lichen thermal sensitivities, moisture interception and elemental accumulation in an arid South African ecosystem(University of the Western Cape, 2010) Maphangwa, Khumbudzo Walter; Musil, Charles F.; Raitt, Lincoln; Zedda, Luciana; Faculty of ScienceElevated temperatures accompanying climate warming are expected to have adverse effects on sensitive lichen species. This premise was examined by measuring the sensitivity of different lichen species to elevated temperatures in the laboratory and in the field. Laboratory studies involved the exposure of nine hydrated lichen species (Xanthoparmelia austro-africana, X. hyporhytida, Xanthoparmelia sp., Xanthomaculina hottentotta, Teloschistes capensis, Ramalina sp., Flavopuntelia caperata, Lasallia papulosa, Parmotrema austrosinensis) collected from sites of different aridity and mean annual temperature for 2 hourly intervals to temperatures ranging from 24ºC to 48ºC in a forced daft oven and measuring their respiration rates and maximum quantum yield of PSII. Field studies involved simultaneous hourly measurements of ground surface air temperatures and Lichen effective quantum yield of PSII of hydrated lichen species populations under ambient and artificially modified environmental conditions.Item The relevance of fog and dew precipitation to succulent plant hydrology in an arid South African ecosystem(2009) Matimati, Ignatious; Musil, Charles F.; Raitt, Lincoln; February, EdmundFog and dew interception and utilization by plant canopies remains one of the least considered aspects of vegetation studies at any scale yet the few studies that have been conducted point to their considerable influence on ecological processes and a critical role in modulating climate in southern African arid ecosystems. Their relevance to succulent plant hydrology was investigated in this study.The first study measured stable 18O and 2H isotope ratios in samples of rain, fog and dew water and compared these with those assayed monthly in stem xylem water of six succulent shrub species over a one year period. Negative 18O and 2H ratios were observed in the stem xylem water of all six species signifying a predominance of water derived from fog and dew precipitation which was most conspicuous during the wet winter. This implied that fog and dew are even more important sources of water than rain and corroborated by significant correspondence found between fog and dew frequencies, succulent foliar water contents and quantum yields of photochemistry.The second study monitored variations in stem diameter at 2-hourly intervals in 8 succulent shrub species of diverse growth form over a 9-month period. Two groups of species were distinguished based on whether their daily amplitudes in stem diameter were consistently positively correlated with daily fluxes in vapour pressure deficit, which were indicative of a persistent CAM photosynthetic mode, or intermittently correlated with daily fluxes in vapour pressure deficit, which were indicative of mixed CAM and C3 photosynthetic modes. Among species displaying a persistent CAM photosynthetic mode, high nocturnal fog and dew precipitation amounts corresponded with low daily amplitudes in stem diameter, and vice versa, which pointed to reduced nocturnal stomatal water loss. These patterns, which were indistinct among species displaying mixed CAM and C3 photosynthetic modes, were corroborated by small daily amplitudes in stem diameter also consistently observed in one species displaying a CAM photosynthetic mode in ambient than artificially fog and dew excluded environments.The third study monitored changes in water mass at hourly intervals of quartz gravel substrates with different dwarf succulent species assemblages over an 8-month period.Consistently greater net amounts of water were intercepted daily by quartz gravel substrates containing Agyroderma pearsonii than Cephalophylum spissum plants as well as those without plants. These attributed to a high water repellence of A. pearsonii leaves and less radiation absorbed by the paler silvery to grey-green leaves of A. pearsonii leaves than the dark green leaves of C. spissum resulting in lower leaf temperatures and less water loss by transpiration. Quartz gravel soils devoid of plants intercepted nearly 5-times greater amounts of precipitation contributed by fog and dew than that contributed by rain. These precipitation amounts exceeding the high percentages of total hydrological input contributed by fog and dew reported in other ecosystems.The study concludes that fog and dew are a vital source of water for succulent shrubs in arid South African ecosystems and imply that diminished fog and dew frequencies associated with elevated night time temperatures accompanying global warming could exacerbate plant drought stress.Item Will climate warming exceed lethal photosynthetic temperature thresholds of lichens in a southern African arid region?(Wiley, 2013) Maphangwa, Khumbudzo Walter; Musil, Charles F.; Raitt, Lincoln; Zedda, LucianaPredicted elevated temperatures and a shift from a winter to summer rainfall pattern associated with global warming could result in the exposure of hydrated lichens during summer to more numerous temperature extremes that exceed their thermal thresholds. This hypothesis was tested by measuring lethal temperature thresholds under laboratory and natural conditions for four epilithic lichen species (Xanthoparmelia austro-africana, X. hyporhytida, Xanthoparmelia sp., Xanthomaculina hottentotta) occurring on quartz gravel substrates at a hot arid inland site two epigeous lichen species (Teloschistes capensis, Ramalina sp.) occurring on gypsum-rich topsoil at a warm humid coastal site. Extrapolated lethal temperatures for photosynthetic quantum yield under laboratory conditions were up to 4°C higher for lichens from a dry inland site than those from a humid coastal site. Lethal temperatures extrapolated for photosynthetic quantum yield at a saturating photosynthetic photon flux density of ≥11,000 µmol photons m-2s-1 under natural conditions were up to 6°C higher for lichens from the dry inland site than the more humid coastal site. It is concluded that only under atypical conditions of lichen exposure in a hydrated state to temperature extremes at high midday solar irradiances during summer could lethal photosynthetic thresholds in sensitive lichen species be potentially exceeded, but whether the increased frequency of such conditions with climate warming would lead to increased likelihood of lichen mortality is debatable.