Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse UWCScholar
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Mupfiga, Upenyu Naume"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Spatial clustering of vegetation fire intensity using modis satellite data
    (MDPI, 2022) Mupfiga, Upenyu Naume; Mutanga, Onisimo; Dube, Timothy
    This work analyses the spatial clustering of fire intensity in Zimbabwe, using remotely sensed Moderate Resolution Imaging Spectroradiometer (MODIS) active fire occurrence data. In order to investigate the spatial pattern of fire intensity, MODIS-derived fire radiative power (FRP) was utilized. A local indicator of spatial autocorrelation method, the Getis-Ord (Gi*) spatial statistic, was applied to show the spatial distribution of high and low fire intensity clusters. Analysis of the relationship between topographic variables, vegetation type, agroecological zones and fire intensity was done. According to the study’s findings, the majority (44%) of active fires detected in the study area in 2019 were of low-intensity (cold spots), and the majority (49.3%) of them occurred in shrubland. High-intensity fires (22%) primarily occurred in the study area’s eastern and western regions. The study findings demonstrate the utility of spatial statistics methods in conjunction with satellite fire data in detecting clusters of high and low-intensity fires (hot spots and cold spots).

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback