Browsing by Author "Molapo, Kerileng Mildred"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Electro chemiluminescence and organic electronics of derivatised poly(aniline sulphonic acid) light-emitting diodes(University of the Western Cape, 2011) Molapo, Kerileng Mildred; Iwuoha, Emmanuel I.Electrochemiluminescence (EeL) is applied for industrial applications that have considerable potential, such as clinical diagnostic, analytical chemistry, and light-emitting devices, due to selectivity, sensitivity for detection and quantification of molecules through generation of fluorescence light when electric current is applied on the materials. In EeL the electrochemical reaction allows for precise control over the time and position of the light emitting reaction. The control over time allows one to synchronise the luminescence and the biochemical reaction under study and control over position not only improves sensitivity of the instrument by increasing the signal to noise ratio, but also allows multiple analytical reactions in the same sample to be analyzed using an electrode array. The EeL generation fluorescent materials are based on inorganic semiconductor materials for light-emitting devices. Further progress in this EeL field mainly depends on discovery of new advanced materials, interfacial films and nanoparticle coatings, advances in microfluidics leading to total increase in EeL properties. There has been extensive use of polymers for enhancement of EeL properties. Electrochemiluminescent conjugated polymers constitute a new class of fluorescent polymers that emit light when excited by the flow of an electric current. These new generation fluorescent materials may now challenge the domination by inorganic semiconductor materials for the commercial market of light-emitting devices such as lightemitting diodes and polymer laser devices (PLDs).Item Electrochemiluminescence and organic electronics of derivatised poly(aniline sulphonic acid) light-emitting diodes(University of the Western Cape, 2011) Molapo, Kerileng Mildred; Iwuoha, EmmanuelApplications of electrochemiluminescent conjugated polymers offer promising solutions in addressing the problem of light emitting devices. However, the challenging problems that hamper their application in light emitting devices are loss of signal due to diffusion of the electrochemiluminescence (ECL) reagent out of the detection zone, limited ability to repeatedly cycle an individual luminophore and high reagent consumption. In this work, the main objective was to produce conducting polymers with enhanced electrochemiluminescence by tuning the properties of the polymer itself. The electrochemical and photophysical properties of films of polyaniline (PANI) and poly(8-anilino-1- naphthalene sulfonic acids) (PANSA) synthesized through electro- and chemical polymerization methods were also investigated. The electrosynthesis of PANSA undoped and doped with anthracene sulfonic acid (ASA), 1,2-naphthaquinone-4-sulfonic acid (NSA) and carbon nanotubes (CNT) in acid medium was investigated and the cyclic voltammograms (CV) showed the growth of the polymer during polymerization. The CV multiscan characterization displayed that the growth of the polymer was dependent of the scan rate and the three redox couples were observed as indicative of the three redox states of typical polyaniline and its derivatives. The results also showed that the peak currents were diffusion controlled and the electron charge transport coefficient (De) of the electrosynthesized polymers was found to range between 10⁻⁸ and 10⁻⁹ cm² s⁻¹ for PANSA, PANSA-ASA, PANSA-NSA and PANSA-CNT. The De value indicates that the movement of electrons along the polymer chain was averagely fast. The transmission electron microscopy (TEM) was used to investigate the electronic morphology of the polymers and the TEM images showed an intertwinement of tubings which aggregate into a ring with a mixture of tubings and plastic sheets. The chemical synthesis of PANI, PANSA and PANI-NSA was carried out by using monomers analine, 8-anilino-1-naphthalene sulfonic acid, and aniline with 1,2- naphthaquinone-4-sulfonic acid, respectively, using oxidants. All chemically synthesized polymers exhibited quinoid and benzoid bands typically see in polyaniline FTIR and Raman spectra confirmed the successfully formation of polymers. The CV characterization of these polymers showed distinctive redox peaks. This proved that the polymers were electroactive, conductive and exhibited reversible electrochemistry. The De of the electrosynthesized polymers was found to be ~10⁻⁵ cm² s⁻¹ for chemically synthesized polymers. The electric conductivity measurement showed to increase from 10⁻⁴ to 10⁻² when aniline was polymerized with NSA dopant, this might be related to the process of electron transfer from dopant to polymer. Scanning electron microscopy for external morphology showed that the polymers were made of different nano- rods polymeric structures. Photophysical properties of electro- and chemically synthesized PANSA and PANI were investigated through UV-vis absorption, fluorescence behaviour, and lifetime. The UV-vis absorption spectra of these polymers showed that they exhibited absorption bands corresponding to the polyemeraldine redox state of typical polyaniline. The effect of dopants resulted in the increase in solubility of the polymers with a small shift of absorption bands due to incorporation of dopants in to the backbone of the polymer. The fluorescence emission spectra of the electrochemically synthesized PANSA with and without dopants were observed to be similar and mirror image of the excitation spectra and corresponding to the electronic band of the benzoid ring in the polyemeraldine form confirming that the fluorescing molecule in these polymers were the benzoid rings. However, the emission spectra of the chemically synthesized PANSA and PANI were different to excitation spectra due to loss of symmetry upon excitation. The effects of chemically synthesized PANI, PANSA and PANI-NSA addition on the photophysical properties of [Ru(bpy)₂(picCOOH)]²⁺.(ClO₄⁻)₂) were investigated in order to understand the interaction of polymer and [Ru(bpy)₂(picCOOH)]²⁺.(ClO₄⁻)₂. The analysis revealed that the presence of polyaniline and its derivatives enhanced the [Ru(bpy)₂(picCOOH)]²⁺.(ClO₄⁻)2 absorption band, photoluminescence and fluorescence lifetime. The enhancement observed from interaction of [Ru(bpy)₂(picCOOH)]²⁺.(ClO₄⁻)₂ with polyaniline and its derivatives might be due to the excited state electron transfer from the PANI and PANSA excited state to the [Ru(bpy)₂(picCOOH)]²⁺.(ClO₄⁻)₂. It was further demonstrated in this work that it is possible to form polyaniline and PANSA doped with [Ru(bpy)₂(picCOOH)]²⁺.(ClO₄⁻)₂ films on ITO electrode using potentiostatic growth method to favour ECL production. The results showed that all films generated ECL in the presence of Tripropylamine (TPA) as a co-reactant and their emission properties depend on time used to prepare the film. The enhancement of ECL signal was due to a positive electron transfer from the conducting polymer (PANI and PANSA) to [Ru(bpy)₂(picCOOH)]²⁺.(ClO₄⁻)₂ complex. The results highlighted the potential of these polymeric luminophores usage in the manufacturing of the ECL devices.Item Electrochemiluminescence of novel polyanilino-rutheniumbipyridyl-imidazo phenanthroline and carboxy-difluoroboradiazaindacene luminophores(University of the Western Cape, 2015) Molapo, Kerileng Mildred; Iwuoha, Emmanuel I.Electrochemiluminiscence, (ECL), is an electrochemically-induced process that leads to the generation of measurable luminescent signals at the electrode surface. The luminescent signals occur when electrochemically generated intermediates undergo a highly exergonic reaction to produce an electronically excited state that then emits light. Immobilization of the ECL luminophore on an electrode surface provides enhancement of ECL intensity. This work presents results of the feasibility study focused on the application of novel luminophores for electrochemiluminescence (ECL) sensors. The thesis mainly focuses on studying the ECL of polyanilinorutheniumbipyridyl- imidazo phenanthroline and carboxydifluoroboradiazaindancence luminophores. The influence of the synthetic methods on the electrochemical, structural and photophysical properties of poly(8-anilino-lnaphthalene sulphonic acid) (P ANSA) synthesized by electropolymerization (PANSA) and chemical polymerization (PANSA) were studied. Cyclic voltammetry (CV) data revealed that the electrogenerated PANSA contains species of mixed redox states; with evidence of the presence of penigraniline, emeraldine and leucoemeraldine forms of PANSA. In contrast, the CV of PANSA indicated that it is predominantly in the emeraldine form with a reduction potential at approximately + 0.2 V. The presence of emeraldine moiety in PANSA was confirmed from UV-Vis spectroscopy data. A band gap energy value of 2.5 eV was calculated for the emeraldine in PANSA from the UV data. Comparative study of the charge transfer coefficient, DCT, of the two types of PANSA indicated moderate charge propagation in PANSA (DCT = 1.68 ± 0.1 x 10-8 cm2 s-') which was order of magnitude lower than for PANSA (DCT = 1.68 ± 0.3 x 10-7 cm2 s-'). The differences in the structural properties of the two polymers were reflected in their IR spectra, with evidence of C=C and C=N stretching vibrations observed at 2030, 2158 and 2486 cm-I in PANSA, which are absent in PANSA. The mode of synthesis had a modest impact on the photophysics of the polymers, for example PANSA exhibited a luminescent lifetime of9.00 ± 0.05 ns compared with 11.5 ± 0.07 ns for PANSA. However, time resolved emission anisotropy studies gave a rotational correlation time, p, of 13.8 ± 2.47 ns for PANSA compared to 0.633 ± 0.03 ns for its chemically generated analogue. This suggests a much shorter chain length in the PANSA molecule and higher cross-linking or aggregation in PANSA that can limit incorporation of ruthenium complex on the polymer backbone. As a result, electrochemiluminescent films have been formed by electrodepositing polyaniline, PANI, films in the presence of [Ru(bpY)2PIC]2+; bpy is 2,2'-bipyridyl and PIC is (2,2'-bipyridyl)-2( 4- carboxylphenyl) imidazo [4,5 ][ 1,10] phenanthroline in this work. The homogeneous charge transport diffusion coefficient, DCT, for the Ru2+/3+couple within the PANI film is 2.6 ± 0.9 x 10-10 cm2s-l. The large DCT facilitates a fast regeneration of Ru3+and, coupled to a relatively rigid microenvironment, results in a high ECL intensity in the presence oftripropylamine as co-reactant compared to [Ru(bpY)3f+. Significantly, despite the conducting nature of the polymer backbone, the [Ru(bpy)2PICH2]2+ loaded PANI has the highest efficiency, 1.00%, yet reported for a surface confined ruthenium complex. PANI-Ru complex showed to have many properties that make it an ideal luminophore for sensitive and selective analytical methods; however, it would be useful to have other ECL labels that can span a wide range of wavelengths so that simultaneous determination of several analytes in a single sample can be investigated. In this case, the photophysics, electrochemical and electrochemiluminescent properties of a novel 1,3,5,7 -tetramethyl-8-[ (2-fluorophenyl)-6-methoxy-l ,5-naphthyridine-3-carboxy ]-4,4'difluoroboradiazaindace-ne BODIPY -COOH, dye were demonstrated in this work. The photophysics studies revealed that BODIPY -COOH is highly luminescent: exhibiting sharp absorbance bands, intense emission bands and high emission quantum yield. The quantum yield proved to be solvent dependent and was determined to be 0.88 ± 0.02 and 0.60 ± 0.04 in dimethylsulphoxide (DMSO) and acetonitrile (MeCN), respectively. Electrochemiluminescence (ECL) of BODIPYCOOH in solution was generated in the presence of either benzoyl peroxide (BPO) or hydrogen peroxide. The ECL turn-on potential in the presence of BPO was observed at potentials that are greater than - 1.5 V, and when H202 was used the ECL turn-on potential was significantly fine-tuned to less negative potential of - 0.4 V. Electrochemiluminescent thin films of BODIPY -COOH on Pt electrodes exhibited luminescence properties similar to those of the free dye in solution. However, the solution based approach ECL has its own limitations such as loss of signal due to the diffusion of the ECL reagent out of the detection zone. To overcome loss of signal effects, the introduction of cysteamine and cysteine linkers to the BODIPY dye were employed. It was seen that self-quenching was not sufficient to interfere significantly with the film ECL emission properties and thus the BODIPY thin film can be used in ECL applications. Interestingly, the BODIPY film exhibited the strongest luminescence in water and this is potentially useful in ECL application in biological media.