Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse UWCScholar
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Mol, Lisa"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Influence of landscape moisture sources and topography on rock weathering patterns associated with wildfire
    (Wiley, 2022) Mol, Lisa; Grenfell, Michael
    From 9 March 2015, a wildfire burned an area of 25.7 km2, or approximately half of the Jonkershoek catchment (Western Cape, South Africa), over the course of 3 days. During this period, large areas of fynbos and commercial forest plantations were razed, and rocks, including boulders and smaller rocks, were exposed to high temperatures. While a substantial body of work has been carried out to investigate the effects of wildfire on landscape development, less is known about the effect of wildfire on rock weathering within a landscape. Previous studies have reported the overall effect of wildfire on rock deterioration, but the effect of intra-fire temperature differences associated with heat behaviour on a slope has not been sufficiently addressed. In this study we investigate the effects of topography and proximity to moisture on rock deterioration processes.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback