Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse UWCScholar
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Mdluli, Siyabonga B."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Synthesis and reactivities of conducting hexathienylbenzene-co-poly(3-hexylthiophene) star-branched copolymer as donor material for organic photovoltaic cell
    (Frontiers Media, 2022) Ramoroka, Morongwa E.; Mdluli, Siyabonga B.; John-Denk, Vivian S.
    The hexathienylbenzene-co-poly(3-hexylthiophene-2,5diyl) (HTB-co-P3HT) conducting polymer was synthesized by oxidative co-polymerization of hexathienylbenzene (HTB) and 3-hexylthiophene using iron chloride (FeCl3) as an oxidant. The effect of chlorobenzene, toluene and chloroform on the optoelectronic characteristics of the polymer was investigated. The study revealed that spectroscopic and electrochemical responses of HTB-co-P3HT are affected by the nature of the solvent. The lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels of HTB-co-P3HT were determined from cyclic voltammetry (CV) and were compared to those of (6,6)-Phenyl C71 butyric acid methyl ester (PC71BM) and it was found that the LUMO energy levels of HTB-co-P3HT in toluene were lower than those for chlorobenzene and chloroform.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback