Browsing by Author "Mbandi, Stanley K."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Chromosomal-level assembly of the Asian seabass genome using long sequence reads and multi-layered scaffolding(Public Library of Science, 2016) Vij, Shubha; Van Heusden, Peter; Christoffels, Alan; Mbandi, Stanley K.; Mwangi, SarahWe report here the ~670 Mb genome assembly of the Asian seabass (Lates calcarifer), a tropical marine teleost. We used long-read sequencing augmented by transcriptomics, optical and genetic mapping along with shared synteny from closely related fish species to derive a chromosome-level assembly with a contig N50 size over 1 Mb and scaffold N50 size over 25 Mb that span ~90% of the genome. The population structure of L. calcarifer species complex was analyzed by re-sequencing 61 individuals representing various regions across the species’ native range. SNP analyses identified high levels of genetic diversity and confirmed earlier indications of a population stratification comprising three clades with signs of admixture apparent in the South-East Asian population. The quality of the Asian seabass genome assembly far exceeds that of any other fish species, and will serve as a new standard for fish genomics.Item A glance at quality score: implication for de novo transcriptome reconstruction of Illumina reads(Frontiers, 2014) Mbandi, Stanley K.; Hesse, Uljana; Rees, Jasper G.; Christoffels, AlanDownstream analyses of short-reads from next-generation sequencing platforms are often preceded by a pre-processing step that removes uncalled and wrongly called bases. Standard approaches rely on their associated base quality scores to retain the read or a portion of it when the score is above a predefined threshold. It is difficult to differentiate sequencing error from biological variation without a reference using a quality score. The effects of quality score based trimming have not been systematically studied in de novo transcriptome assembly. Using RNA-Seq data produced from Illumina,we teased out the effects of quality score based filtering or trimming on de novo transcriptome reconstruction. We showed that assemblies produced from reads subjected to different quality score thresholds contain truncated and missing transfrags when compared to those from untrimmed reads. Our data supports the fact that de novo assembling of untrimmed data is challenging for de Bruijn graph assemblers. However, our results indicates that comparing the assemblies from untrimmed and trimmed read subsets can suggest appropriate filtering parameters and enables election of the optimum de novo transcriptome assembly in non-model organisms.Item Inferring bona fide transfrags in RNA-Seq derived-transcriptome assemblies of non-model organisms(BioMed Central, 2015) Mbandi, Stanley K.; Hesse, Uljana; Van Heusden, Peter; Christoffels, AlanBackground: De novo transcriptome assembly of short transcribed fragments (transfrags) produced from sequencing-by-synthesis technologies often results in redundant datasets with differing levels of unassembled, partially assembled or mis-assembled transcripts. Post-assembly processing intended to reduce redundancy typically involves reassembly or clustering of assembled sequences. However, these approaches are mostly based on common word heuristics and often create clusters of biologically unrelated sequences, resulting in loss of unique transfrags annotations and propagation of mis-assemblies. Results: Here, we propose a structured framework that consists of a few steps in pipeline architecture for Inferring Functionally Relevant Assembly-derived Transcripts (IFRAT). IFRAT combines 1) removal of identical subsequences, 2) error tolerant CDS prediction, 3) identification of coding potential, and 4) complements BLAST with a multiple domain architecture annotation that reduces non-specific domain annotation. We demonstrate that independent of the assembler, IFRAT selects bona fide transfrags (with CDS and coding potential) from the transcriptome assembly of a model organism without relying on post-assembly clustering or reassembly. The robustness of IFRAT is inferred on RNA-Seq data of Neurospora crassa assembled using de Bruijn graph-based assemblers, in single (Trinity and Oases-25) and multiple (Oases-Merge and additive or pooled) k-mer modes. Single k-mer assemblies contained fewer transfrags compared to the multiple k-mer assemblies. However, Trinity identified a comparable number of predicted coding sequence and gene loci to Oases pooled assembly. IFRAT selects bona fide transfrags representing over 94% of cumulative BLAST-derived functional annotations of the unfiltered assemblies. Between 4-6% are lost when orphan transfrags are excluded and this represents only a tiny fraction of annotation derived from functional transference by sequence similarity. The median length of bona fide transfrags ranged from 1.5kb (Trinity) to 2kb (Oases), which is consistent with the average coding sequence length in fungi. The fraction of transfrags that could be associated with gene ontology terms ranged from 33-50%, which is also high for domain based annotation. We showed that unselected transfrags were mostly truncated and represent sequences from intronic, untranslated (5′ and 3′) regions and non-coding gene loci. Conclusions: IFRAT simplifies post-assembly processing providing a reference transcriptome enriched with functionally relevant assembly-derived transcripts for non-model organism.