Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse UWCScholar
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Matthews, James C."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Aerosol mass and size‑resolved metal content in urban Bangkok, Thailand
    (Springer, 2022) Matthews, James C.; Navasumrit, Panida; Shallcross, Dudley E.
    Inhalable particulate matter (PM) is a health concern, and people living in large cities such as Bangkok are exposed to high concentrations. This exposure has been linked to respiratory and cardiac diseases and cancers of the lung and brain. Throughout 2018, PM was measured in northern Bangkok near a toll road (13.87°N, 100.58°E) covering all three seasons (cool, hot and rainy). PM10 was measured in 24- and 72-h samples. On selected dates aerodynamic size and mass distribution were measured as 3-day samples from a fxed 5th foor inlet. Particle number concentration was measured from the 5th foor inlet and in roadside survey measurements. There was a large fraction of particle number concentration in the sub-micron range, which showed the greatest variability compared with larger fractions. Metals associated with combustion sources were most found on the smaller size fraction of particles, which may have implications for associated adverse health outcomes because of the likely location of aerosol deposition in the distal airways of the lung. PM10 samples varied between 30 and 100 μg m−3, with highest concentrations in the cool season.
  • Loading...
    Thumbnail Image
    Item
    Electrical environment can be altered at 1 km distances from high voltage power lines.
    (Institute of Physics, 2024) Matthews, James C.; Shallcross, Dudley E
    High voltage powerlines emit electrical charges into the atmosphere which can then attach to aerosols. This space charge above ground can be measured directly using ion spectrometers or indirectly through perturbations of the Earth's potential gradient using field mills. Several publications are reviewed to find evidence of aerosol charging at a distance from power lines. Field measurements of charge state near to high voltage power lines selected due to their high emissions of ions measured a small positive enhancement of electrical charge on aerosols at distances greater than 300 m, corresponding to a transit time of up to 400 s A quasi one-dimensional model of ion-aerosol interactions from a high voltage powerlines found that the addition of new ions to an aerosol population will result in those ions transferring charge to the aerosol which would then remain the dominant carrier of charge several hundred meters downwind. 10-min PG measurements from a fixed site measuring in 2008 compared measurements when the site was downwind of a 275 kV powerline to times with no wind and found evidence of space charge overhead through greater fields and variability at distances over 800 m These studies combined show evidence that the electrical environment near to power lines can be altered beyond 1 km from AC high voltage power lines, with excess charges likely to be concentrated on aerosol.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback