Browsing by Author "Masikini, Milua"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Development of Impedimetric Immunosensor for Fumonisin on Polyanilino-Carbon Nanotubes Doped with Palladium Telluride Nanocrystals(University of the Western Cape, 2013) Masikini, Milua; lwuoha, EmmanuelImmunosensors are affinity ligand-based biosensor solid-state devices in which the immunochemical reaction is coupled to a transducer. The specificity of the molecular recognition of antigens by antibodies to form a stable complex is the basis of the immunosensor on the electrode. The development of such a sensor requires a better design and preparation of an optimum interface between the biomolecules and the detector material. The immunosensors were developed based on Polyaniline derivative composite. Novel water soluble PdTe quantum dots (QD) was synthesized and characterized by different physical techniques such as UV-Visible (UV-VIS), Fluorescence Spectroscopy (PL), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and X-Ray Diffraction (XRD). The electroactivity of such synthesized quantum dots was studied by cyclic voltammetry in aqueous media. The synthesis of poly(2,5- dimethoxyaniline)-multi wall 'carbon nanotubes nanocomposite was carried out by electropolymerization in situ of 2,5-dimethoxyaniline - multi wall carbon nanotubes (PDMA-MWCNT) from aqueous dispersion containing acid-treated multi wall carbon nanotubes (MWCNT) and 2,5-dimethoxyaniline subsequently modifying a glassy carbon electrode in acid media. An undoped PDMA was also prepared for control. The composite for this work, consists of layer-by-layer method to form a multilayer film of QDs and PDMA-MWCNT. The method used was as follows; the drop coating of quantum dots followed by electrodeposition of poly(2,5- dimethoxyaniline )-carbon nanotubes onto surface of glassy carbon. The PDMA-CNT was characterized by UV-Visible (UV-Vis), Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The electrochemical characterisation of PDMA-CNT was carried out using cyclic voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). The composite (QDs-PDMA-MWCNT) was also characterized using above mentioned techniques. The electrochemical immunosensor for fumonisin a mycotoxin was prepared by dropcoating of mycotoxins antibody onto the composite modified glassy carbon electrode. The response profiles of fumonisins sensors system were obtained from electrochemical impedance spectroscopy (EIS) measurements. The fumonisin immunosensor was used for the detection of fumonisins in certified com reference materials. For comparison reasons, analysis of such mycotoxins was carried out by using conventional analytical method enzyme-linked immunosorbent assay (ELISA). The EIS response of FBI immunosensor (GCEIPT-PDMA-MWCNT/anti-Fms-BSA) gave a linear range of 7 to 49 ng L-I and the corresponding sensitivity and detection limits were 0.0162 ka L ng-I and 0.46 pg L-I, respectively. Hence the limit of detection of GCEIPT-PDMA-MWCNT immunosensor for fumonisins in com certified material was calculated to 0.014 and 0.011 ppm for FBI, and FB2 and FB3, respectively. These results are lower than those obtained by ELISA, a provisional maximum tolerable daily intake (PMTDI) for fumonisins (the sum of FBI, FB2, and FB3) established by the Joint FAO / WHO expert committee on food additives and contaminants of 2 ug kg" and the maximum level recommended by the U.S. Food and Drug Administration (FDA) for protection of human consumption (2-4 mg L-I).Item Tellurium attenuation of kesterite band-gap for improved photovoltaic efficiency(University of the Western Cape, 2019) Nwambaekwe, Kelechi Chiemezie; Iwuoha, Emmanuel; Masikini, MiluaTellurium is a member of the chalcogen group in the periodic table and is known to be a better semiconductor material when compared to sulfur and selenium. By introducing tellurium into the kesterite structure there would be an improvement in the semiconducting property of the kesterite material. This research focused on incorporating tellurium into kesterite structure in order to reduce its band-gap thereby improving its light absorption and ultimately lead to a more efficient photovoltaic effect. For a typical synthesis, kesterite nanoparticles were synthesized by anion hot injection process which involved the injection of the anion precursor comprising of sulfur, selenium and tellurium in diethylene glycol into a solution containing the cation precursor which are copper (II) chloride, Zinc chloride and tin (II) chloride which are dissolved in diethylene glycol. The synthesized nanoparticles were copper zinc tin sulfide (CZTS), copper zinc tin sulfide selenide telluride (CZTSSeTe) and copper zinc tin sulfide telluride (CZTSTe). Morphological characterization of the synthesized nanoparticles was carried out by high-resolution scanning electron microscopy (HRSEM) and high-resolution transmission electron microscopy (HRTEM) to obtain the shape of the surface and internal structure of the nanoparticles respectively. The micrograph obtained from HRSEM shows that all synthesized nanoparticles had a flower-like surface appearance which is a common morphology obtained for non-vacuum synthesized kesterite nanoparticles. The micrograph obtained from TEM showed that all nanoparticles were agglomerated and had a black surface covering which attributable to the solvent used during synthesis, washing and centrifugation. The internal structure of the synthesized nanoparticles was obtained through small angle x-ray scattering (SAXS) plot of the shapes. The shape obtained for the nanoparticles were core shell hollow sphere for CZTS, core shell dumb-bell for CZTSSeTe and solid sphere for CZTSTe.Item The use of cyclodextrin template-based metal oxide nanomaterials in the development of electrochemical sensors for phenolic endocrine disruptor compounds(University of the Western Cape, 2010) Masikini, Milua; Waryo, Tesfaye T.; Baker, Priscilla G.; Iwuoha, Emmanuel; Dept. of Chemistry; Faculty of ScienceIron oxide nanoparticles were prepared using co-precipitation method in the presence and absence of beta-cyclodextrin β-CD). Such materials were characterized using transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), attenuated total reflection Fourier transform infrared (ATR-FTIR), X-ray diffraction (XRD), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA). The TEM shows that the surface morphology has no difference between nanoparticles prepared in the presence and absence of beta-cyclodextrin β-CD), amorphous particles with high surface area and dimensions of about 100 nm by 500 nm. The amorphous states of nanoparticles are confirmed further by XRD. The ATR-FTIR analysis confirms inclusion complex between β-CD and nanoparticles. The nanoparticles synthesized were used to develop an electrochemical sensor for phenolic endocrine disruptors by modifying the surface area of glassy carbon electrode (GCE). Electrochemical characterization of the iron oxide β-CD nano-composites, studied in 0.1 M potassium chloride (KCl) using chronoamperometry,showed that the surface concentration of the adsorbed composite material was 8.5 x 10-8 mol/cm2. Sensor analysis of bisphenol A (BPA) was carried out using cyclic voltammetry (CV) and square wave voltammetry (SWV) based on amperometric techniques which gave a linear range of 0.50 × 10-6 M to 50 × 10-6 M; limit of detection of 0.156 x 10-6 M and order of magnitude of linearity of 2.03. Hence, the sensor was further used to study 4-tert-octylphenol (TOP); the results showed that the sensitivity and the limit of detection were 11.31 nA L/mol and 0.249 x 10-6 M, respectively and order of magnitude of linearity of 2.00.