Browsing by Author "Kosch, Michael"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Analysis and exploitation of landforms for improved optimisation of camera based wildfire detection systems(Springer, 2021) Heyns, Andries M.; du Plessis, Warren; Kosch, MichaelTower-mounted camera-based wildfire detection systems provide an effective means of early forest fire detection. Historically, tower sites have been identified by foresters and locals with intimate knowledge of the terrain and without the aid of computational optimisation tools. When moving into vast new territories and without the aid of local knowledge, this process becomes cumbersome and daunting. In such instances, the optimisation of final site layouts may be streamlined if a suitable strategy is employed to limit the candidate sites to landforms which offer superior system visibility. A framework for the exploitation of landforms for these purposes is proposed. The landform classifications at 165 existing tower sites from wildfire detection systems in South Africa, Canada and the USA are analysed using the geomorphon technique, and it is noted that towers are located at or near certain landform types.Item Height determination of a blue discharge observed by asim/mmia on the international space station(Wiley, 2023) Bai, Xue; Füllekrug, Martin; Kosch, MichaelWe analyze simultaneous photometric observations of thundercloud discharges from the Modular Multispectral Imaging Array of the Atmosphere-Space Interactions Monitor (ASIM) on board the International Space Station with ground-based vertical electric field measurements in South Africa on 3 February 2019 at 23:00–23:05 UTC. During this time, ASIM flew over an extended thunderstorm front of several hundreds of kilometers and recorded a blue discharge with the photometer at 337 nm which emitted strong electric fields. It is found that the rising edge of the blue photomultiplier tube light pulse allows the estimation of the blue discharge height: ∼10.9–16.5 km which is constrained by cloud top height in a range of ∼13.3–16.7 km deduced from infrared radiometry on board the geostationary Meteosat satellite.