Browsing by Author "Kohn, Tertius A"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Muscle fiber type and metabolic profiles of four muscles from the African black ostrich(Meat Science, 2023) Kohn, Tertius A; Magwaza, S'thandiwe N; Adamson, Luqmaan; Anley, Megan J.Muscle fiber type, fiber cross-sectional area (CSA), enzyme activities (citrate synthase (CS), 3-hydroxyacetyl Co A dehydrogenase (3HAD), lactate dehydrogenase (LDH) and phosphofructokinase (PFK)) and glycogen content were analyzed in the M. iliotibialis cranialis (ITC), M. iliotibialis lateralis, M. gastrocnemius (G) and M. fibularis longus (FL) muscles from 24 ostriches. Type I and II fiber proportions were similar across the 4 muscles, but the ITC had overall the smallest fibers. CS activity was the highest in the ITC, but similar between the remainder of the muscles. 3HAD activities were very low in all muscles, ranging between 1.9 and 2.7 μmol/min/g protein, indicating poor β-oxidation. The ITC also had the lowest PFK activity. Glycogen content averaged ∼85 mmol/kg dry weight across the muscles with large intramuscular variations. The 4 ostrich muscles present with low fat oxidation capacity and low glycogen content, which could have significant implications on meat quality attributes.Item The pathophysiology of rhabdomyolysis in ungulates and rats: towards the development of a rodent model of capture myopathy(Springer, 2023) Kohn, Tertius A; Lubbe, Crystal; Meyer, Leith C. RCapture myopathy (CM), which is associated with the capture and translocation of wildlife, is a life-threatening condition that causes noteworthy morbidity and mortality in captured animals. Such wildlife deaths have a significant impact on nature conservation efforts and the socio-economic wellbeing of communities reliant on ecotourism. Several strategies are used to minimise the adverse consequences associated with wildlife capture, especially in ungulates, but no successful preventative or curative measures have yet been developed. The primary cause of death in wild animals diagnosed with CM stems from kidney or multiple organ failure as secondary complications to capture-induced rhabdomyolysis. Ergo, the development of accurate and robust model frameworks is vital to improve our understanding of CM. Still, since CM-related complications are borne from biological and behavioural factors that may be unique to wildlife, e.g. skeletal muscle architecture or flighty nature, certain differences between the physiology and stress responses of wildlife and rodents need consideration in such endeavours. Therefore, the purpose of this review is to summarise some of the major etiological and pathological mechanisms of the condition as it is observed in wildlife and what is currently known of CM-like syndromes, i.e. rhabdomyolysis, in laboratory rats. Additionally, we will highlight some key aspects for consideration in the development and application of potential future rodent models.