Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse UWCScholar
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Kirsti, Kauristie"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Multi-instrument observations of large-scale atmospheric gravity waves/traveling ionospheric disturbances associated with enhanced auroral activity over Svalbard
    (Elsevier, 2019-09-03) Kosch, Michael J.; Katamzi-Joseph, Zama T.; Aruliah, Anasuya L.; Kjellmar, Oksavik; John Bosco, Habarulema; Kirsti, Kauristie
    This study reports on observations of large-scale atmospheric gravity waves/traveling ionospheric disturbances (AGWs/TIDs) using Global Positioning System (GPS) total electron content (TEC) and Fabry–Perot Interferometer’s (FPI’s) intensity of oxygen red line emission at 630 nm measurements over Svalbard on the night of 6 January 2014. TEC large-scale TIDs have primary periods ranging between 29 and 65 min and propagate at a mean horizontal velocity of ~749–761 m/s with azimuth of ~345–347° (which corresponds to poleward propagation direction). On the other hand, FPI large-scale AGWs have larger periods of ~42–142 min. These large-scale AGWs/TIDs were linked to enhanced auroral activity identified from co-located all-sky camera and IMAGE magnetometers. Similar periods, speed and poleward propagation were found for the all-sky camera (~60–97 min and ~823 m/s) and the IMAGE magnetometers (~32–53 min and ~708 m/s) observations. Joule heating or/and particle precipitation as a result of auroral energy injection were identified as likely generation mechanisms for these disturbances. © 2018 COSPAR. Published by Elsevier Ltd. All rights reserved.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback