Browsing by Author "Kilkenny, D."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Pulsations and eclipse-time analysis of HWVir(Oxford University Press, 2018) Baran, A. S.; Østensen, R. H.; Telting, J. H.; Vos, J.; Kilkenny, D.; Vuckovic, M.; Reed, M. D.; Silvotti, R.; Jeffery, C. S.; Parsons, S. G.; V. S. Dhillon, V. S.; Marsh, T. R.We analysed recent K2 data of the short-period eclipsing binary systemHWVir,which consists of a hot subdwarf-B type primary with an M-dwarf companion.We determined the mid-times of eclipses, calculated O–C diagrams, and an average shift of the secondary minimum. Our results show that the orbital period is stable within the errors over the course of the 70 days of observations. Interestingly, the offset from mid-orbital phase between the primary and the secondary eclipses is found to be 1.62 s. If the shift is explained solely by light-travel time, the mass of the sdB primary must be 0.26M , which is too low for the star to be core-helium burning. However, we argue that this result is unlikely to be correct and that a number of effects caused by the relative sizes of the stars conspire to reduce the effective light-travel time measurement. After removing the flux variation caused by the orbit, we calculated the amplitude spectrum to search for pulsations. The spectrum clearly shows periodic signal from close to the orbital frequency up to 4600 μHz, with the majority of peaks found below 2600 μHz. The amplitudes are below0.1 part-per-thousand, too lowto be detected with groundbased photometry. Thus, the high-precision data from the Kepler spacecraft has revealed that the primary of the HWVir system is a pulsating sdBV star. We argue that the pulsation spectrum of the primary in HWVir differs from that in other sdB stars due to its relatively fast rotation that is (nearly) phase-locked with the orbit.Item A spectroscopic analysis of the eclipsing nova-like EC 21178−5417 – discovery of spiral density structures(Oxford University Press, 2020) Kilkenny, D.; Khangale, Z. N.; Woudt, P. A.We present phase-resolved optical spectroscopy of the eclipsing nova-like cataclysmic variable EC 21178−5417 obtained between 2002 and 2013. The average spectrum of EC 21178−5417 shows broad double-peaked emission lines from He II 4686 Å (strongest feature) and the Balmer series. The high-excitation feature, C III/N III at 4640–4650 Å, is also present and appears broad in emission. A number of other lines, mostly He I, are clearly present in absorption and/or emission.