Browsing by Author "Khan, M. Anwar H."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Abundance of no3 derived organo-nitrates and their importance in the atmosphere(MPDI, 2021) Foulds, Amy; Khan, M. Anwar H.; Shallcross, Dudley E.The chemistry of the nitrate radical and its contribution to organo-nitrate formation in the troposphere has been investigated using a mesoscale 3-D chemistry and transport model, WRFChem-CRI. The model-measurement comparisons of NO2 , ozone and night-time N2O5 mixing ratios show good agreement supporting the model’s ability to represent nitrate (NO3 ) chemistry reasonably. Thirty-nine organo-nitrates in the model are formed exclusively either from the reaction of RO2 with NO or by the reaction of NO3 with alkenes. Temporal analysis highlighted a significant contribution of NO3 -derived organo-nitrates, even during daylight hours. Night-time NO3 -derived organo-nitrates were found to be 3-fold higher than that in the daytime. The reactivity of daytime NO3 could be more competitive than previously thought, with losses due to reaction with VOCs (and subsequent organo-nitrate formation) likely to be just as important as photolysis. This has highlighted the significance of NO3 in daytime organo-nitrate formation, with potential implications for air quality, climate and human health. Estimated atmospheric lifetimes of organo-nitrates showed that the organo-nitrates act as NOx reservoirs, with particularly short-lived species impacting on air quality as contributors to downwind ozone formation.Item Investigating the variation of benzene and 1,3 butadiene in the UK during 2000–2020(MDPI, 2022) Holland, Rayne; Khan, M. Anwar H.; Shallcross, Dudley E.The concentrations of benzene and 1,3-butadiene in urban, suburban, and rural sites of the U.K. were investigated across 20 years (2000–2020) to assess the impacts of pollution control strategies. Given the known toxicity of these pollutants, it is necessary to investigate national long-term trends across a range of site types. We conclude that whilst legislative intervention has been successful in reducing benzene and 1,3-butadiene pollution from vehicular sources, previously overlooked sources must now be considered as they begin to dominate in contribution to ambient pollution. Benzene concentrations in urban areaswere found to be ~5-fold greater than those in rural areas,whilst 1,3-butadiene concentrations were up to ~10-fold greater.Item A two-decade anthropogenic and biogenic isoprene emissions study in a London urban background and a London urban traffic site(MDPI, 2018) Khan, M. Anwar H.; Schlich, Billie-Louise; Jenkin, Michael E.; Shallcross, Beth M.A.; Moseley, Katherine; Walker, Catherine; Morris, William C.; Derwent, Richard G.; Percival, Carl J.; Shallcross, Dudley E.A relationship between isoprene and 1,3-butadiene mixing ratios was established to separate the anthropogenic and biogenic fractions of the measured isoprene in London air in both urban background (Eltham) and urban traffic (Marylebone Road) areas over two decades (1997–2017). The average daytime biogenic isoprene mixing ratios over this period reached 0.09 ± 0.04 ppb (Marylebone Road) and 0.11 ± 0.06 ppb (Eltham) between the period of 6:00 to 20:00 local standard time, contributing 40 and 75% of the total daytime isoprene mixing ratios. The average summertime biogenic isoprene mixing ratios for 1997–2017 are found to be 0.13 ± 0.02 and 0.15 ± 0.04 ppb which contribute 50 and 90% of the total summertime isoprene mixing ratios for Marylebone Road and Eltham, respectively. Significant anthropogenic isoprene mixing ratios are found during night-time (0.11 ± 0.04 ppb) and winter months (0.14 ± 0.01 ppb) at Marylebone Road. During high-temperature and high-pollution events (high ozone) there is a suggestion that ozone itself may be directly responsible for some of the isoprene emission. By observing the positive correlation between biogenic isoprene levels with temperature, photosynthetically active radiation and ozone mixing ratios during heatwave periods, the Cobb-Douglas production function was used to obtain a better understanding of the abiotic factors that stimulate isoprene emission from plants. Other reasons for a correlation between ozone and isoprene are discussed. The long-term effects of urban stressors on vegetation were also observed, with biogenic isoprene mixing ratios on Marylebone Road dropping over a 20-year period regardless of the sustained biomass levels.