Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse UWCScholar
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Kelly, Gabrielle Enid"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Graphene based materials for carbon capture
    (University of Western Cape, 2020) Kelly, Gabrielle Enid; Titinchi, Salam; Abbo, Hanna
    The adverse effects of CO2 and greenhouse gas emissions into the atmosphere is believed to be one of the causes of climate change. The seriousness of global warming is encouraging the development of technologies designed to reduce CO2 emissions. Adsorption in the broadest context can be considered to be a promising method to address this due to the energy saving potential and regenerability, compared to other techniques. In this study, graphite was first oxidized to graphene oxide (GO) with concentrated acid. This was followed by formation of the aminosilanes viz. 3- aminopropyl-triethoxysilane (APTES), tris(2-aminoethyl)amine (TRIS) and guanidine being functionalized onto the surface of graphene oxide (GO). A second series involving the ordered mesoporous materials (OMS) was prepared employing cetyltrimethylammonium bromide (CTAB) and P123 triblock copolymer, as the structure directing agents for the organization of polymerizing silica species. Following the self-assembly of OMS onto GO, the so formed GO-OMS compound was modified with polyethylenimine (PEI). Several characterization techniques such as X-ray powder diffraction (XRD), Fourier Transform Infra-Red (FT-IR) spectroscopy, high resolution scanning microscopy (HRSEM), high resolution transmission electron microscopy (HRTEM) and N2 physisoprion employing the Brunauer-Emmett-Teller (BET) analysis to determine specific surface areas of porous solid materials were employed to study the structural, morphological and textural properties of the adsorbents.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback