Browsing by Author "Kapangaziwiri, Evison"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Application of the rainfall infiltration breakthrough (RIB) model for groundwater recharge estimation in west coastal South Africa(Water Research Commission, 2013) Xianfeng, Sun; Jovanovic, Nebo Z.; Kapangaziwiri, Evison; Brendonck, Luc; Bugan, Richard Domain HunterRecharge estimation in arid and semi-arid areas is very challenging. The chloride mass balance method applied in western South Africa fails to provide reliable recharge estimates near coastal areas. A relationship between rainfall events and water level fluctuations (WLF) on a monthly basis was proposed in the rainfall infiltration breakthrough (RIB) model for the purpose of groundwater recharge estimation. In this paper, the physical meaning of parameters in the CRD and previous RIB models is clarified, and the RIB model is reviewed with the algorithm improved to accommodate various time scales, namely, daily, monthly and annual scales. Recharge estimates on a daily and monthly basis using the revised RIB approach in 2 study areas, one in a sandy alluvial aquifer (Riverlands) and the other in the Table Mountain Group (TMG) shallow unconfined aquifer (Oudebosch), are presented, followed by sensitivity analysis. Correlation analysis between rainfall and observed WLF data at daily scale and monthly scale, together with recharge estimates obtained from other methods, demonstrates that the RIB results using monthly data are more realistic than those for daily data, when using long time series. Scenarios using the data from Oudebosch with different rainfall and groundwater abstraction inputs are simulated to explore individual effects on water levels as well as recharge rate estimated on a daily basis. The sensitivity analysis showed that the recharge rate by the RIB model is specifically sensitive to the parameter of specific yield; therefore, the accurate representative specific yield of the aquifer needs to be selected with caution. The RIB model demonstrated in these two cases can be used to estimate groundwater recharge with sufficiently long time series of groundwater level and rainfall available in similar regions. In summary, the RIB model is best suited for shallow unconfined aquifers with relatively lower transmissiv - ity; the utility of the RIB model for application in different climatic areas under different hydrogeological conditions needs to be further explored.Item Assessing the effects of non-stationarity on reservoir yield estimations: A case study of the Southern Okavango integrated water development system in Botswana(John Wiley and Sons Ltd, 2024) Mazvimavi, Dominic; Kapangaziwiri, Evison; Gumbo, Anesu DionStreamflow data used for water resources planning should ideally be stationary, and any non-stationary behaviour is taken into account. However, with limited time series data, the influence of non-stationarity is often hidden and can result in unreliable estimates. This paper examines the impact of non-stationarity on the Southern Okavango Integrated Water Development (SOIWD) project that was carried out with streamflow collected between 1969 and 1989 against an extended time series from 1990 to 2019. To achieve this, (a) the statistics of these inflows and (b) the reliability of satisfying water demands from the proposed reservoirs were tested based on the two periods (1969–1989 and 1990–2019). The results show that average monthly flows for July, August and September significantly change when peak outflows from the delta occur. Given the expected variability of the flow regime, an uncertainty approach utilising flow perturbation from ±5% to ±90% was also used to investigate the system's response to changes in the driving flow conditions. The increasing availability of flow data from 1990 to 2019 has shown that the SOIWD system would not have satisfied the water demand as it would not be operationally viable. This confirms the importance of accounting for non-stationarity in reservoir yield estimation and reemphasises its importance in hydrological studiesItem Assessment of the spatiotemporal dynamics of the hydrological state of non-perennial river systems and identification of flow-contributing areas(South African Water Research Commission, 2024) Maswanganye, Sagwati E; Dube, Timothy; Jovanovic, Nebo; Kapangaziwiri, Evison; Mazvimavi, DominicNon-perennial rivers (NPRs) have three hydrological states; each state has its importance, function and implication for water resource management. The dynamics of these states have been inadequately assessed and understood. Hence, this study sought to determine the spatiotemporal variations in the hydrological conditions of NPRs, focusing on the Touws river–karoo drylands and Molototsi river within the semi-arid region of the Limpopo province of South Africa. Additionally, the study aimed to delineate and characterize the primary areas contributing to runoff in these two river systems. Sentinel-1 and sentinel-2 satellite data sources were employed in this study. Specifically, the modified normalized difference water index (MNDWI) derived from sentinel-2 was utilized to delineate water surface areas along the two rivers. Subsequently, these derived datasets were utilized to assess the hydrological states over a 32-month period (2019–2022). Based on the presence of water, the river’s state was classified as flowing, pooled, or dry. The results showed that remote sensing can be used to determine the hydrological state of the two river systems with ~90% overall accuracy. However, there is about a 30% chance that a flow event can be missed using Sentinel-2 due to clouds and temporal resolution. Some of these gaps can be filled using synthetic aperture radar (SAR) data (Sentinel-1), as demonstrated with the Molototsi river. In the Molototsi catchment, the upper catchment contributes the majority of flows. For the Touws river, the southwestern part of the catchment was determined as the major contributing area for the observed flows. This suggests that the chosen observation site might not be representative of upper catchment dynamics; therefore, a monitoring site in the upper catchment is required. This study provided hydrological information and an approach that can be used to monitor the hydrological states for better understanding and management of NPRs and catchments