Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse UWCScholar
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Kamwi, Innocent Silibelo"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Fitting extreme value distributions to the Zambezi river flood water levels recorded at Katima Mulilo in Namibia
    (University of the Western Cape, 2005) Kamwi, Innocent Silibelo; Koen, C; Blignaut, Renette; Dept. of Statistics; Faculty of Science
    The aim of this research project was to estimate parameters for the distribution of annual maximum flood levels for the Zambezi River at Katima Mulilo. The estimation of parameters was done by using the maximum likelihood method. The study aimed to explore data of the Zambezi's annual maximum flood heights at Katima Mulilo by means of fitting the Gumbel, Weibull and the generalized extreme value distributions and evaluated their goodness of fit.
  • Loading...
    Thumbnail Image
    Item
    Fitting extreme value distributions to the Zambezi River flood water levels recorded at Katima Mulilo in Namibia (1965-2003)
    (University of the Western Cape, 2005) Kamwi, Innocent Silibelo; Koen, Chris; Blignaut, Renette J
    This study sought to identify and fit the appropriate extreme value distribution to flood data, using the method of maximum likelihood. To examine the uncertainty of the estimated parameters and evaluate the goodness of fit of the model identified. The study revealed that the three parameter Weibull and the generalised extreme value (GEV) distributions fit the data very well. Standard errors for the estimated parameters were calculated from the empirical information matrix. An upper limit to the flood levels followed from the fitted distribution.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback