Browsing by Author "Jacobs, Alex"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Capacity to control oxidative stress-induced caspase-like activity determines the level of tolerance to salt stress in two contrasting maize genotypes(Springer, 2013) Keyster, Marshall; Klein, Ashwil; Du Plessis, Morné; Jacobs, Alex; Kappo, Abidemi; Kocsy, Gábor; Galiba, Gábor; Ludidi, NdikoThe response of two maize (Zea mays L.) genotypes, named GR (salt-tolerant) and SK (salt-sensitive), to salt stress (150 mM NaCl) was investigated under controlled environmental growth conditions. Genotype SK experienced more oxidative damage than the GR genotype when subjected to salt stress, which corresponded to higher O2- production rate and H2O2 content in the SK genotype than the GR genotype. Induction of caspase-like activity in response to salt stress was stronger in the SK genotype than in the GR genotype. On the other hand, induction of antioxidant enzyme activity to scavenge O2- and H2O2 in response to salt stress was weaker in the SK genotype than in the GR genotype. Consequently, the higher level of oxidative damage in the SK genotype in response to salt stress was manifested as more extensive cell death and biomass reduction in the SK genotype than it was in the GR genotype. Our results suggest that a direct relationship exists between salt stress-induced oxidative damage and cell death-inducing caspase-like activity, with tolerance to the salt stress being controlled by the efficiency of the plantantioxidant enzymes in limiting salt stress-induced oxidative damage and thus limiting cell death-inducing caspase-like activity.Item Modulation of antioxidant enzyme activities and metabolites ratios by nitric oxide in short-term salt stressed soybean root nodules(Elsevier, 2013) Egbichi, I.; Keyster, Marshall; Jacobs, Alex; Klein, Ashwil; Ludidi, NdikoSeveral abiotic factors cause molecular damage to plants either directly or through the accumulation of reactive oxygen species such as hydrogen peroxide (H2O2). We investigated if application of nitric oxide (NO) donor 2,2′- (hydroxynitrosohydrazono) bis-ethanimine (DETA/NO) could reduce the toxic effect resulting from short-term salt stress. Salt treatment (150 mM NaCl) alone and in combination with 10 μM DETA/NO or 10 μM DETA were given to matured soybean root nodules for 24 h. Salt stress resulted in high H2O2 level and lipid peroxidation while application of DETA/NO effectively reduced H2O2 level and prevented lipid peroxidation in the soybean root nodules. NO treatment increased the activities of ascorbate peroxidase and dehydroascorbate reductase under salt stress. Whereas short-term salt stress reduced AsA/DHAsA and GSH/GSSG ratios, application of the NO donor resulted in an increase of the reduced form of the antioxidant metabolites thus increasing the AsA/DHAsA and GSH/GSSG ratios. Our data suggests a protective role of NO against salt stress.