Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse UWCScholar
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "J. Ndayishimye"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Relativistic mean field formulation of clustering in heavy nuclei
    (IOP, 2010) S.M. Wyngaardt; H. W. Groenewald; T.T Ibrahim; J. Ndayishimye; S.M. Perez
    Very little is known about clustering in heavy nuclei and in particular the interaction between the correlated cluster nucleons and remaining core nucleons. Currently the phenomenological Saxon-Woods plus cubic Saxon-Woods core-cluster potential successfully predicts the alpha decay half-life and energy band spectra of a number of heavy nuclei. This model, however, lacks a microscopic understanding of clustering phenomenon in these heavy nuclear systems. A fully relativistic microscopic formalism is presented, which generates the core-cluster potential by means of the McNeil, Ray and Wallace based double folding procedure. The core and cluster baryon densities are calculated by using a relativistic mean field approach. The Lorentz covariant IA1 representation of the nucleon-nucleon interaction is folded with the core and cluster densities. Theoretical predictions of the ground-state decay half-life and positive parity energy band of 212Po are obtained with the relativistic mean field formalism and which are compared to the results from the phenomenological Saxon-Woods plus cubic Saxon-Wood core-cluster potential and microscopic M3Y interaction.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback