Browsing by Author "Iwuoha, Emmanuel Iheanyichukwu"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Instrumental techniques for characterization of molybdenum disulphide nanostructures(Hindawi, 2020) Iwuoha, Emmanuel Iheanyichukwu; Ramohlola, Kabelo Edmond; Hato, Mpitloane JosephThe excellent chemical and physical properties of materials (nanomaterials) with dimensions of less than 100 nm (nanometers) resulted in researchers and industrialists to have great interest in their discovery and applications in various systems/applications. As their sizes are reduced to nanoscale, these nanomaterials tend to possess exceptional properties differing from those of their bulk counterparts; hence, they have found applications in electronics and medicines. In order to apply them in those applications, there is a need to synthesise these nanomaterials and study their structural, optical, and electrochemical properties. Among several nanomaterials, molybdenum disulphide (MoS2) has received a great interest in energy applications due to its exceptional properties such as stability, conductivity, and catalytic activities. Hence, the great challenge lies in finding the state-of-the-art characterization techniques to reveal the different properties of MoS2 nanostructures with great accuracy. In this regard, there is a need to study and employ several techniques to accurately study the surface chemistry and physics of the MoS2 nanostructures. Hence, this review will comprehensively discuss a detailed literature survey on analytical techniques that can be used to study the chemical, physical, and surface properties of MoS2 nanostructures, namely, ultraviolet-visible spectroscopy (UV-vis), photoluminescence spectroscopy (PL), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, time-of-flight secondary ion mass spectroscopy (TOF-SIMS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning and transmission electron microscopies (SEM and TEM), atomic force microscopy (AFM), energy dispersive X-ray spectroscopy (EDS/X), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and electroanalytical methods which include linear sweep (LSV) and cyclic (CV) voltammetry and electrochemical impedance spectroscopy (EIS).Item Novel heterojunction superstrate Cu2ZnInS4−x (CZIS) thin film kesterite solar cell with vertical arrays of hexagonal ZnO nanorods window layer(Elsevier, 2022-11-24) Yussuf, Sodiq Tolulope; Ramoroka, Morongwa Emmanuel; Mdluli, Siyabonga Beizel; Nwambaekwe, Kelechi Chiemezie; Ekwere, Precious Idinma; Uhuo, Onyinyechi Vivian; Ikpo, Chinwe Oluchi; Iwuoha, Emmanuel IheanyichukwuQuaternary Cu2ZnInS4−x (CZIS) thin films have been prepared by a facile and cheap sol-gel spin coating technique. Low-temperature solution-based methods were used to fabricate a heterojunction solar cell in the superstrate architecture with CZIS thin film as the absorber, vertically aligned ZnO nanorod arrays, and CdS as the window and buffer layers respectively. ZnO nanorod arrays were prepared by hydrothermal technique and nanocrystal layer deposition technique were employed for the deposition of CdS-coated ZnO nanorod arrays. CZIS absorber layer was spin coated on the CdS-coated ZnO nanorod arrays and annealed at different temperatures. The vertically aligned ZnO nanorod arrays, and uniformly distributed CdS shell layer were confirmed from morphological studies. The device had a final configuration of Glass/ITO/ZnO NRs/CdS/ CZIS/Ag. HRSEM revealed a nanoflake-like morphology and a band gap between 1.5 and 1.77 eV for the CZIS thin films. CZIS superstrate solar cell had a power conversion efficiency of ∼ 0.61%, an open circuit voltage of ∼ 0.8 V, a short circuit current of ∼ 0.95 mA cm−2 and a fill factor of ∼ 61.35%. This method demonstrates a novel, facile and eco-friendly technique for synthesizing nanocrystalline CZIS thin films with promising photo response from the fabricated device indicating a proof of principle that this material can find application in solar cells.Item Progress on perovskite materials for energy application(Elsevier, 2021) Monama, Gobeng R.; Ramohlola, Kabelo E.; Iwuoha, Emmanuel IheanyichukwuEnergy underlies the human development and welfare. Today energy depends on combustion of fossil fuels (coal, natural gas, oil) sources. These sources have not only led to severe environmental issues because it emits greenhouse gases, they are rapidly depleted due to their enormous consumption. For several years’ numerous technologies have been developed to address the fossil fuel depletion and greenhouse gases emission from the non-renewable in order to constantly supply energy to the people and industries. However, the challenge of being able to store energy generated and utilize it later is a matter of importance when resolving energy problems persists. New materials, particularly perovskites offer a great advantage to be utilized as a possible host or carriers for energy applications. The impact of defect on the material properties and influence of defects as material for energy application is described. The use of perovskites oxides for effective electrocatalysis in hydrogen evolution reactions, photocataysis, photovoltaic solar cells, electrocatalysis, solid oxide fuel cells, supercapacitors and metal-air batteries, are also included. This review covers the latest progress on perovskite oxides as electrochemical energy materials.