Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse UWCScholar
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Isafiade, Omowunmi E."

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    3D forensic crime scene reconstruction involving immersive technology: A systematic literature review
    (Institute of Electrical and Electronics Engineers, 2022) Maneli, Mfundo A.; Isafiade, Omowunmi E.
    Recreation of 3D crime scenes is critical for law enforcement in the investigation of serious crimes for criminal justice responses. This work presents a premier systematic literature review (SLR) that offers a structured, methodical, and rigorous approach to understanding the trend of research in 3D crime scene reconstruction as well as tools, technologies, methods, and techniques employed thereof in the last 17 years. Major credible scholarly database sources, Scopus, and Google Scholar, which index journals and conferences that are promoted by entities such as IEEE, ACM, Elsevier, and SpringerLink were explored as data sources. Of the initial 17, 912 papers that resulted from the first search string, 258 were found to be relevant to our research questions after implementing the inclusion and exclusion criteria.
  • Loading...
    Thumbnail Image
    Item
    A multifactor comparative assessment of augmented reality frameworks in diverse computing settings
    (Institute of Electrical and Electronics Engineers, 2023) Maneli, Mfundo A.; Isafiade, Omowunmi E.
    Research and development on different augmented reality (AR) frameworks have come a long way when it comes to image tracking, object tracking, plane tracking and light estimation. However, there might be trade-offs and varying results obtained from different AR frameworks, depending on the use cases, and this is critical for consideration during immersive application development. Besides the current literature effort, this research proposes a multifactor comparative analysis of two core AR frameworks, which aims to analyze and evaluate ARKit and ARCore in diverse computing settings. This research developed a structural application which evaluated three major test parameters across ten devices spanning ARKit and ARCore. The first parameter relates to evaluating AR measurements using four different distance criteria. The second parameter evaluated resource utilization, relating to the central processing unit (CPU) and random access memory (RAM), while the last parameter evaluated plane detection based on light estimation.
  • Loading...
    Thumbnail Image
    Item
    A novel immersive anatomy education system (anat_hub): Redefining blended learning for the musculoskeletal system
    (MDPI, 2022) Boomgaard, Ayesha; Fritz, Kaylyn A.; Isafiade, Omowunmi E.
    Immersive technologies are redefining ways of interacting with 3D objects and their environments. Moreover, efforts in blended learning have presented several advantages of incorporating educational technology into the learning space. The advances in educational technology have in turn helped to widen the choice of different pedagogies for improving learner engagement and levels of understanding. However, there is limited research in anatomy education that has considered the use and adoption of immersive technologies for the musculoskeletal system, despite its immense advantage. This research presents a practical immersive anatomy education system (coined Anat_Hub) developed using the agile scrum and participatory design method at a selected tertiary institution in Cape Town, South Africa, which promotes learner engagement through an asynchronous technological means using augmented reality (AR). The aim of the study was to develop an immersive AR mobile application that will assist learners and educators in studying and teaching the names, attachments, and actions of muscles of the human musculoskeletal system (upper and lower limbs). The Anat_Hub application offers a wide range of useful features for promoting active and self-regulated learning, such as 3D and AR modes, glossary, and quiz features.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback