Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse UWCScholar
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Iragi, Bakulikira C."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    New parameter-uniform discretisations of singularly perturbed Volterra integro-differential equations
    (Natural Sciences Publishing, 2018) Iragi, Bakulikira C.; Munyakazi, Justin B.
    We design and analyse two numerical methods namely a fitted mesh and a fitted operator finite difference methods for solving singularly perturbed Volterra integro-differential equations. The fitted mesh method we propose is constructed using a finite difference operator to approximate the derivative part and some suitably chosen quadrature rules for the integral part. To obtain a parameter-uniform convergence, we use a piecewise-uniform mesh of Shishkin type. On the other hand, to construct the fitted operator method, the Volterra integro-differential equation is discretised by introducing a fitting factor via the method of integral identity with the use of exponential basis function along with interpolating quadrature rules [2]. The two methods are analysed for convergence and stability. We show that the two methods are robust with respect to the perturbation parameter. Two numerical examples are solved to show the applicability of the proposed schemes.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback