Browsing by Author "Ikpo, Chinwe Oluchi"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Development of high performance composite lithium ion battery cathode systems with carbon nanotubes functionalised with bimetallic inorganic nanocrystal alloys(University of Western Cape, 2011) Ikpo, Chinwe Oluchi; Iwuoha, Emmanuel; Ozeomena, Kenneth I.Lithium ion cathode systems based on composites of lithium iron phosphate (LiFePO₄), iron-cobalt-derivatised carbon nanotubes (FeCo-CNT) and polyaniline (PA) nanomaterials were developed. The FeCo-functionalised CNTs were obtained through in-situ reductive precipitation of iron (II) sulfate heptahydrate (FeSO₄.7H₂O) and cobalt (II) chloride hexahydrate (CoCl₂.6H₂O) within a CNT suspension via sodium borohydrate (NaBH₄) reduction protocol. Results from high Resolution Transmission Electron Microscopy (HRTEM) and Scanning Electron Microscopy (SEM) showed the successful attachment FeCo nanoclusters at the ends and walls of the CNTs. The nanoclusters provided viable routes for the facile transfer of electrons during lithium ion deinsertion/insertion in the 3-D nanonetwork formed between the CNTs and adjacent LiFePO₄ particles.Item Novel heterojunction superstrate Cu2ZnInS4−x (CZIS) thin film kesterite solar cell with vertical arrays of hexagonal ZnO nanorods window layer(Elsevier, 2022-11-24) Yussuf, Sodiq Tolulope; Ramoroka, Morongwa Emmanuel; Mdluli, Siyabonga Beizel; Nwambaekwe, Kelechi Chiemezie; Ekwere, Precious Idinma; Uhuo, Onyinyechi Vivian; Ikpo, Chinwe Oluchi; Iwuoha, Emmanuel IheanyichukwuQuaternary Cu2ZnInS4−x (CZIS) thin films have been prepared by a facile and cheap sol-gel spin coating technique. Low-temperature solution-based methods were used to fabricate a heterojunction solar cell in the superstrate architecture with CZIS thin film as the absorber, vertically aligned ZnO nanorod arrays, and CdS as the window and buffer layers respectively. ZnO nanorod arrays were prepared by hydrothermal technique and nanocrystal layer deposition technique were employed for the deposition of CdS-coated ZnO nanorod arrays. CZIS absorber layer was spin coated on the CdS-coated ZnO nanorod arrays and annealed at different temperatures. The vertically aligned ZnO nanorod arrays, and uniformly distributed CdS shell layer were confirmed from morphological studies. The device had a final configuration of Glass/ITO/ZnO NRs/CdS/ CZIS/Ag. HRSEM revealed a nanoflake-like morphology and a band gap between 1.5 and 1.77 eV for the CZIS thin films. CZIS superstrate solar cell had a power conversion efficiency of ∼ 0.61%, an open circuit voltage of ∼ 0.8 V, a short circuit current of ∼ 0.95 mA cm−2 and a fill factor of ∼ 61.35%. This method demonstrates a novel, facile and eco-friendly technique for synthesizing nanocrystalline CZIS thin films with promising photo response from the fabricated device indicating a proof of principle that this material can find application in solar cells.Item Photoluminescence quenching of a novel electroconductive poly(Propylene thiophenoimine)-co-poly(ethylenedioxy thiophene) star copolymer(MDPI, 2020) Yonkeu, Anne Lutgarde Djoumessi; Ndipingwi, Miranda Mengwi; Ikpo, Chinwe OluchiA generation 1 poly(propylene thiophenoimine)-co-poly(ethylenedioxy thiophene) (G1PPT-co-PEDOT) star copolymer, which exhibits a strong optical absorption over a broad range in the ultraviolet–visible (UV-Vis) region and with good electro/conductive properties, was chemically prepared for the first time. Synthesis of the star copolymer, G1PPT-co-PEDOT was confirmed by spectroscopic studies. Indeed, the disappearance of the very high intensity bands, C–H bending at α-position (687 cm−1), and C=N stretching (1620 cm−1) in the Fourier transform infrared spectroscopy (FTIR) of G1PPT-co-PEDOT, which were initially present in the spectrum of the thiolated starting material, G1PPT, confirmed copolymerization. Furthermore, a large bathochromic shift in the onset wavelength of the UV-Vis absorbance spectra from 367 nm in G1PPT to 674 nm in G1PPT-co-PEDOT further attests of successful copolymerization. The electrochemical analysis of G1PPT-co-PEDOT achieved a highest occupied molecular orbital (HOMO) energy level value of 5.3 eV, which is reminiscent of the value for an ideal electron-donor material. Photoluminescence quenching of up to 82% was observed in solution blends of the G1PPT-co-PEDOT star copolymer and N,N′-diisopropyl naphthalene diimide (NDI).