Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse UWCScholar
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Hussein, Eslam"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Geo-physical parameter forecasting on imagery{based data sets using machine learning techniques
    (University of Western Cape, 2021) Hussein, Eslam; Ghaziasgar, Mehrdad
    This research objectively investigates the e ectiveness of machine learning (ML) tools towards predicting several geo-physical parameters. This is based on a large number of studies that have reported high levels of prediction success using ML in the eld. Therefore, several widely used ML tools coupled with a number of di erent feature sets are used to predict six geophysical parameters namely rainfall, groundwater, evapora- tion, humidity, temperature, and wind. The results of the research indicate that: a) a large number of related studies in the eld are prone to speci c pitfalls that lead to over-estimated results in favour of ML tools; b) the use of gaussian mixture models as global features can provide a higher accuracy compared to other local feature sets; c) ML never outperform simple statistically-based estimators on highly-seasonal parame- ters, and providing error bars is key to objectively evaluating the relative performance of the ML tools used; and d) ML tools can be e ective for parameters that are slow- changing such as groundwater.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback