Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Browse UWCScholar
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Holgate, D"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Codenseness and openness with respect to an interior operator
    (Springer Nature, 2021) Assfaw, F.S; Holgate, D
    Working in an arbitrary category endowed with a fixed (E, M) -factorization system such that M is a fixed class of monomorphisms, we first define and study a concept of codense morphisms with respect to a given categorical interior operator i. Some basic properties of these morphisms are discussed. In particular, it is shown that i-codenseness is preserved under both images and dual images under morphisms in M and E, respectively. We then introduce and investigate a notion of quasi-open morphisms with respect to i. Notably, we obtain a characterization of quasi i-open morphisms in terms of i-codense subobjects. Furthermore, we prove that these morphisms are a generalization of the i-open morphisms that are introduced by Castellini. We show that every morphism which is both i-codense and quasi i-open is actually i-open. Examples in topology and algebra are also provided.
  • Loading...
    Thumbnail Image
    Item
    Quasi-uniform structures determined by closure operators
    (Elsevier, 2021) Holgate, D; Iragi, M
    We demonstrate a one-to-one correspondence between idempotent closure operators and the so-called saturated quasi-uniform structures on a category C. Not only this result allows to obtain a categorical counterpart P of the Császár-Pervin quasi-uniformity P, that we characterize as a transitive quasi-uniformity compatible with an idempotent interior operator, but also permits to describe those topogenous orders that are induced by a transitive quasi-uniformity on C. The categorical counterpart P⁎ of P−1 is characterized as a transitive quasi-uniformity compatible with an idempotent closure operator. When applied to other categories outside topology P allows, among other things, to generate a family of idempotent closure operators on Grp, the category of groups and group homomorphisms, determined by the normal closure.

DSpace software copyright © 2002-2025 LYRASIS

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback