Browsing by Author "Holgate, D"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Codenseness and openness with respect to an interior operator(Springer Nature, 2021) Assfaw, F.S; Holgate, DWorking in an arbitrary category endowed with a fixed (E, M) -factorization system such that M is a fixed class of monomorphisms, we first define and study a concept of codense morphisms with respect to a given categorical interior operator i. Some basic properties of these morphisms are discussed. In particular, it is shown that i-codenseness is preserved under both images and dual images under morphisms in M and E, respectively. We then introduce and investigate a notion of quasi-open morphisms with respect to i. Notably, we obtain a characterization of quasi i-open morphisms in terms of i-codense subobjects. Furthermore, we prove that these morphisms are a generalization of the i-open morphisms that are introduced by Castellini. We show that every morphism which is both i-codense and quasi i-open is actually i-open. Examples in topology and algebra are also provided.Item Quasi-uniform structures determined by closure operators(Elsevier, 2021) Holgate, D; Iragi, MWe demonstrate a one-to-one correspondence between idempotent closure operators and the so-called saturated quasi-uniform structures on a category C. Not only this result allows to obtain a categorical counterpart P of the Császár-Pervin quasi-uniformity P, that we characterize as a transitive quasi-uniformity compatible with an idempotent interior operator, but also permits to describe those topogenous orders that are induced by a transitive quasi-uniformity on C. The categorical counterpart P⁎ of P−1 is characterized as a transitive quasi-uniformity compatible with an idempotent closure operator. When applied to other categories outside topology P allows, among other things, to generate a family of idempotent closure operators on Grp, the category of groups and group homomorphisms, determined by the normal closure.