Browsing by Author "Halindintwali, Sylvain"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item Effect of the annealing atmosphere on the layer interdiffusion in Pd/Ti/Pd multilayer stacks deposited on pure Ti and Ti-alloy substrates(University of the Western Cape, 2019) Halindintwali, Sylvain; Donald, Earl; Cummings, Franscious; Arendse, ChristopherPd(50 nm)/Ti(25 nm)/Pd(50 nm) multilayer stack has been deposited on Ti and Ti6Al4V substrates; we have studied the intermixing of layers upon annealing at the hydrogenation temperature of 550 °C, under vacuum, H/Ar gas mixture and pure hydrogen atmospheres. Scanning electron microscopy (SEM) micrographs indicated surface roughening in samples annealed under vacuum and H/Ar gas mixture while those annealed under pure H2 remained relatively smoother. Rutherford backscattering spectrometry (RBS) revealed intermixing of layers as evidenced by the diffusion of Pd toward the bulk, while XRD indicated the formation of PdTi2 phase in the samples annealed under vacuum and H/Ar gas mixture atmosphere. In-situ, real-time RBS showed that the annealing under pure H2 preserves the integrity of the Pd catalyst. No indication of the PdTi2 formation in the pure H2 annealed samples was observed; instead only the TiH2 phase appeared, indicating the absorption of H into the system.Item Hydrogen storage capacity of the Ti-Pd multilayer systems(University of the Western Cape, 2020) Magogodi, Steven Mothibakgomo; Halindintwali, SylvainHydrogen has high energy density and it is regarded as the future energy carrier. Hydrogen can be stored as a gas in high-pressure cylinders, as a liquid in cryogenic tanks and as a solid in metal hydrides. The storage of hydrogen in gas and liquid form has many limitations. Light metal hydrides show high energy density and are a promising and more practical mode of hydrogen storage. In particular, titanium and its alloys are promising metal hydrides for hydrogen storage due to their high affinity to hydrogen. The aim of this study is to investigate the effect of thermal annealing on hydrogen storage capacity of Ti-Pd multilayer systems. Ti-Pd multilayer films were prepared on CP-Ti (commercial pure Ti) and Ti6Al4V substrates using an electron beam evaporator equipped with a thickness monitor. The sequential deposition of layers Pd(50nm)/Ti(25nm)/Pd(50nm) was done at a constant deposition rate of 0.6 Å/s. The first batch of samples were thermally annealed at 550 °C in vacuum for two hours, the second batch of samples were annealed at 550 oC under H2(15%)/Ar(85%) gas mixture for two hours and the third series of samples was annealed under pure H2 gas at 550 oC for one hour. SEM showed relatively homogeneous and smooth topography of surfaces in as-deposited samples, while a rough textured surface was observed in both samples annealed under vacuum and under H2/Ar gas mixture. The samples annealed under pure H2 gas did not show any sign of crystallites grow but instead a relatively smooth surface with sign of etching. XRD revealed structural transformation as evidenced by the presence of PdTi2 phase in samples annealed under vacuum; in samples annealed under the gas mixture Pd2Ti was noted in addition to TiH2 and TiO2. While the TiH2 phase is an indication of hydrogen absorption, the TiPd2 phase suggests intermixing of the deposited layers and the presence of TiO2 is evidence of oxidation. The samples annealed under pure H2 gas showed only TiH2 with no trace of structural transformation. RBS confirmed the intermixing of layers in the samples annealed under vacuum and H2(15%)/Ar(85%) gas mixture, while samples annealed under pure H2 gas did not show any intermixing of layers. ERDA revealed an average H content of ~ 3.5 at.% in CP-Ti and ~6.2 at.% in Ti6Al4V for samples annealed under H2(15%)/Ar(85%) gas mixture. We recorded an hydrogen content of ~19.5 at.% in CP-Ti annealed under pure H2 while ~25.5 at.% was found in Ti6Al4V annealed under the same conditions. When the thickness of the Pd catalyst layers was increased to 100 nm (i.e. Pd (100 nm)/Ti (25 nm)/Pd (100 nm)), only ~ 12.5 at.% and 11.2 at. % hydrogen content was recorded in samples prepared on CP-Ti and Ti6Al4V alloy respectively, both annealed under pure hydrogen for one hour as above.Item Hydrogen storage in Ti-based coatings and Ti6Al4V alloy(University of the Western Cape, 2016) Mazwi, Sive; Topic, Miroslava; Halindintwali, Sylvain; February, Schadrack NsengiyumvaHydrogen has been regarded as an ideal energy carrier for future, it can be stored as a liquid in cryogenic tanks, a gas in high pressure cylinders and as solid in metal hydrides. Hydrogen storage in metal hydrides is of research interest because hydrides often have high energy density than gas or liquid hydrogen and are relatively safe. Ti and Ti alloys are promising hydrogen storage material because they have high affinity for hydrogen, light in weight and react reversibly with hydrogen. This work aims to investigate the hydrogen storage capacity of CP- Ti and Ti6Al4V alloy and Pd/Ti6Al4V alloy, where Pd was deposited on Ti6Al4V alloy. Samples were hydrogenated from room temperature to 650 °C at atmospheric pressure in the vacuum furnace under the 15%H/Ar atmosphere. Hydrogenation was carried out for a period of 3 hours for all samples. Sample composition and layer thickness were determined using Rutherford backscattering spectrometry. The microstructure and phase transformation were investigated using optical microscopy and X-ray diffraction technique. Hydrogen storage capacity was determined using elastic recoil detection analysis and gravimetric method. It was found that hydrogenation temperature has an effect on hydrogen absorption, microstructure and phase transformation. Maximum hydrogen concentration was obtained at hydrogenation temperatures of 550 °C for all materials with 45.57 at.% in CP-Ti, 34.77 at.% in Ti6Al4V alloy and 39 at.% H in Pd/Ti6Al4V coated system. In CP-Ti it was found that hydrogen absorption begins at 550 °C and decreases at hydrogenation temperature of 650 °C and that hydrogenation at both temperatures leads to formation of titanium hydrides and needlelike microstructure. At temperatures below 550 °C no hydrides were formed. For Ti6Al4V alloy ERDA results showed that no significant hydrogen absorption occurred at temperatures below 550 °C and at hydrogenation temperature of 650 °C, hydrogen absorption decreased drastically. The δ- titanium hydride was detected in the sample hydrogenated at 550 °C. Fine needle like microstructure was observed in the sample hydrogenated at 550 °C, and at higher temperature (650 °C ) coarse needles were formed. Pd coatings on Ti6Al4V alloy was found to increase the absorption of hydrogen, and allowing hydrogen to be absorbed at low temperatures.Item Latent and thermal energy storage enhancement of silver nanowires-nitrate molten salt for concentrated solar power(University of Western Cape, 2020) Maaza, Malik; Halindintwali, SylvainPhase change material (PCM) through latent heat of molten salt, is a convincing way for thermal energy storage in CSP applications due to its high volume density. Molten salt, with (60% NaNO3 and 40% KNO3) has been used extensively for energy storage however; the low thermal conductivity and specific heat have limited its large implementation in solar applications. For that, molten salt with the additive of silver nanowires (AgNWs) was synthesized and characterized. This research project aims to investigate the thermophysical properties enhancement of nanosalt (Mixture of molten salt and silver nanowires). The results obtained showed that by simply adjusting the temperature, Silver nanowires with high aspect ratio have been synthesized through the enhanced PVP polyol process method. SEM results revealed a network of silver nanowires and TEM results confirmed the presence of silver nanowires with an average diameter of 129 nm and 16 μm in length.Item Solid state dewetting of a metal –semiconductor bi-layers deposited onto c-Si substrate(Springer, 2023) Halindintwali, Sylvain; Masenya, Madipoane; Madhuku, MorganA bi-layers stack consisting of a semiconductor thin film of a varied thickness and a very thin Pd layer (SiC/Pd/c-Si).was deposited onto c-Si by e-beam evaporation at room temperature. The multi-layers structure was subjected to a thermal annealing process at near eutectic temperature of the Si – Pd phase. It is noticed, through top view SEM and cross-section STEM analyses, that the sandwiched Pd metal layer dewets from the interface with the c-Si substrate in well dispersed nanoparticles and it diffuses inward onto the top few monolayers of the substrate; at times it permeates shallowly through the SiC semiconductor top layer. The size distribution of the nanoparticles was found to be closely linked to the thickness of the top semiconductor layer.Item Structural properties and optical modelling of SiC thin films(University of the Western Cape, 2020) Ahmed, Fatema; Halindintwali, SylvainAmorphous silicon carbide (a-SiC) is a versatile material due to its interesting mechanical, chemical and optical properties that make it a candidate for application in solar cell technology. As a-SiC stoichiometry can be tuned over a large range, consequently is its bandgap. In this thesis, amorphous silicon carbide thin films for solar cells application have been deposited by means of the electron-beam physical vapour deposition (e-beam PVD) technique and have been isochronally annealed at varying temperatures. The structural and optical properties of the films have been investigated by Fourier transform Infrared and Raman spectroscopies, X-ray diffraction, Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy and UV-VIS-NIR spectroscopy. The effect of annealing is a gradual crystallization of the amorphous network of as-deposited silicon carbide films and consequently the microstructural and optical properties are altered. We showed that the microstructural changes of the as-deposited films depend on the annealing temperature. High temperature enhances the growth of Si and SiC nanocrystals in amorphous SiC matrix. Improved stoichiometry of SiC comes with high band gap of the material up to 2.53 eV which makes the films transparent to the visible radiation and thus they can be applied as window layer in solar cells.Item A study of hydrogenated nanocrystalline silicon thin films deposited by hot-wire chemical vapour deposition (HWCVD)(University of the Western Cape, 2005) Halindintwali, Sylvain; Knoesen, Dirk; Dept. of Physics; Faculty of ScienceIn this thesis, intrinsic hydrogenated nanocrystalline silicon thin films for solar cells application have been deposited by means of the hot – wire chemical vapour deposition (HWCVD) technique and have been characterised for their performance. It is noticed that hydrogenated nanocrystalline silicon is similar in some aspects (mainly optical) to its counterpart amorphous silicon actually used as the intrinsic layer in the photovoltaic industry. Substantial differences between the two materials have been found however in their respective structural and electronic properties. We show that hydrogenated nanocrystalline silicon retains good absorption coefficients known for amorphous silicon in the visible region. The order improvement and a reduced content of the bonded hydrogen in the films are linked to their good stability. We argue that provided a moderate hydrogen dilution ratio in the monosilane gas and efficient process pressure in the deposition chamber, intrinsic hydrogenated nanocrystalline silicon with photosensitivity better than 102 and most importantly resistant to the Staebler Wronski effect (SWE) can be produced. This work explores the optical, structural and electronic properties of this promising material whose study – samples have been exclusively produced in the HWCVD reactors based in the Solar Cells laboratory of the Physics department at the University of the Western Cape.Item A study of SiC thin film layers for electrically conductive diffusion barrier application in Si thin film solar cells.(University of the Western Cape, 2019) Mazibuko, Thandi Elinah; Halindintwali, SylvainSemiconductor silicon carbide (SiC) thin films of different thicknesses were deposited by electron beam physical vapour deposition (EBPVD) for application as diffusion barrier application to guard against metal contaminants in Si silicon solar cells. The deposited films were implanted with a high and low fluence of 5 × 1016 ions/cm2 and 1 × 1016 ions/cm2; before implantation stopping of ions in matter (SRIM) software package was used to simulate an implantation profile. Realtime Rutherford backscattering spectrometry (real-time-RBS) studies were done on the implanted films ramping from room-temperature (RT) to temperature of 600 ℃, which was the maximum temperature that the heater in the system used could achieve, show that Ag was stable until the probed temperature range. Subsequent isochronal annealing experiments were done for 1 hour at 650 ℃ and 950 ℃. The simulations of RBS spectra and Energy dispersive X-ray (EDX) spectroscopy results revealed a gradual Ag decrease in the films with increasing temperature. The broadening and the appearance of new small peaks on the implantation profile of Ag suggest the onset of the metal diffusion in the film. Fourier transform infrared (FTIR) spectroscopy studies showed that the width of the SiC vibration peak at around 800 cm-1 becomes narrower as the temperature is increased, suggesting a crystallization in SiC; the grain boundaries might thus be the pathway of the diffusing Ag. Scanning electron microscopy (SEM) micrographs showed a roughening of the film surface of the same layer in which the onset of diffusion was observed at 850 ℃; this suggested a crystallization of the film in agreement with FTIR investigation. This temperature was thus chosen for isothermal annealing studies. As in the case of isochronal annealing, a gradual decrease and change in the shape of the Ag RBS profile both towards the surface and to the interface; this was interpreted as in-diffusion and out-diffusion competing mechanisms.